Potential impact of outpatient stewardship interventions on antibiotic exposures of common bacterial pathogens

  1. Christine Tedijanto  Is a corresponding author
  2. Yonatan H Grad
  3. Marc Lipsitch
  1. Harvard TH Chan School of Public Health, United States

Abstract

The relationship between antibiotic stewardship and population levels of antibiotic resistance remains unclear. In order to better understand shifts in selective pressure due to stewardship, we use publicly available data to estimate the effect of changes in prescribing on exposures to frequently used antibiotics experienced by potentially pathogenic bacteria that are asymptomatically colonizing the microbiome. We quantify this impact under four hypothetical stewardship strategies. In one scenario, we estimate that elimination of all unnecessary outpatient antibiotic use could avert 6 to 48% (IQR: 17 to 31%) of exposures across pairwise combinations of sixteen common antibiotics and nine bacterial pathogens. All scenarios demonstrate that stewardship interventions, facilitated by changes in clinician behavior and improved diagnostics, have the opportunity to broadly reduce antibiotic exposures across a range of potential pathogens. Concurrent approaches, such as vaccines aiming to reduce infection incidence, are needed to further decrease exposures occurring in 'necessary' contexts.

Data availability

Data from the 2015 National Ambulatory Medical Care Survey (NAMCS) and National Hospital Ambulatory Medical Care Survey (NHAMCS) are publicly available from the National Center for Health Statistics. This study also uses data from published literature, including the Human Microbiome Project and other studies summarized in Figure 1 - Source Data File 1.

The following previously published data sets were used

Article and author information

Author details

  1. Christine Tedijanto

    Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States
    For correspondence
    ctedijanto@g.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3403-5765
  2. Yonatan H Grad

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    Yonatan H Grad, Has received consulting income from Merck and GlaxoSmithKline.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5646-1314
  3. Marc Lipsitch

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    Marc Lipsitch, Reviewing editor, eLife.Has received consulting income from Affinivax, Antigen Discovery, Merck, and Pfizer and research grants through Harvard School of Public Health from Pfizer and PATH.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1504-9213

Funding

National Institute of General Medical Sciences (U54GM088558)

  • Marc Lipsitch

National Institute of Allergy and Infectious Diseases (R01AI132606)

  • Yonatan H Grad

Centers for Disease Control and Prevention (CK000538-01)

  • Marc Lipsitch

Doris Duke Charitable Foundation

  • Yonatan H Grad

National Institute of Allergy and Infectious Diseases (T32AI007535)

  • Christine Tedijanto

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Miles P Davenport, University of New South Wales, Australia

Version history

  1. Received: September 29, 2019
  2. Accepted: January 28, 2020
  3. Accepted Manuscript published: February 5, 2020 (version 1)
  4. Version of Record published: February 17, 2020 (version 2)

Copyright

© 2020, Tedijanto et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 880
    views
  • 118
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christine Tedijanto
  2. Yonatan H Grad
  3. Marc Lipsitch
(2020)
Potential impact of outpatient stewardship interventions on antibiotic exposures of common bacterial pathogens
eLife 9:e52307.
https://doi.org/10.7554/eLife.52307

Share this article

https://doi.org/10.7554/eLife.52307

Further reading

    1. Epidemiology and Global Health
    Xiaoxin Yu, Roger S Zoh ... David B Allison
    Review Article

    We discuss 12 misperceptions, misstatements, or mistakes concerning the use of covariates in observational or nonrandomized research. Additionally, we offer advice to help investigators, editors, reviewers, and readers make more informed decisions about conducting and interpreting research where the influence of covariates may be at issue. We primarily address misperceptions in the context of statistical management of the covariates through various forms of modeling, although we also emphasize design and model or variable selection. Other approaches to addressing the effects of covariates, including matching, have logical extensions from what we discuss here but are not dwelled upon heavily. The misperceptions, misstatements, or mistakes we discuss include accurate representation of covariates, effects of measurement error, overreliance on covariate categorization, underestimation of power loss when controlling for covariates, misinterpretation of significance in statistical models, and misconceptions about confounding variables, selecting on a collider, and p value interpretations in covariate-inclusive analyses. This condensed overview serves to correct common errors and improve research quality in general and in nutrition research specifically.

    1. Ecology
    2. Epidemiology and Global Health
    Emilia Johnson, Reuben Sunil Kumar Sharma ... Kimberly Fornace
    Research Article

    Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.