Abstract

Molecular mimicry is an evolutionary strategy adopted by viruses to exploit the host cellular machinery. We report that SARS-CoV-2 has evolved a unique S1/S2 cleavage site, absent in any previous coronavirus sequenced, resulting in striking mimicry of an identical FURIN-cleavable peptide on the human epithelial sodium channel α-subunit (ENaC-α). Genetic alteration of ENaC-α causes aldosterone dysregulation in patients, highlighting that the FURIN site is critical for activation of ENaC. Single cell RNA-seq from 65 studies shows significant overlap between expression of ENaC-α and the viral receptor ACE2 in cell types linked to the cardiovascular-renal-pulmonary pathophysiology of COVID-19. Triangulating this cellular characterization with cleavage signatures of 178 proteases highlights proteolytic degeneracy wired into the SARS-CoV-2 lifecycle. Evolution of SARS-CoV-2 into a global pandemic may be driven in part by its targeted mimicry of ENaC-α, a protein critical for the homeostasis of airway surface liquid, whose misregulation is associated with respiratory conditions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Praveen Anand

    R&D, nference, Bangalore, India
    Competing interests
    Praveen Anand, The author is an employee of nference..
  2. Arjun Puranik

    Data Science, nference, San Francisco, United States
    Competing interests
    Arjun Puranik, The author is an employee of nference..
  3. Murali Aravamudan

    R&D, nference, Cambridge, United States
    Competing interests
    Murali Aravamudan, The author is an employee of Nference..
  4. AJ Venkatakrishnan

    R&D, nference, Cambridge, United States
    For correspondence
    aj@nference.net
    Competing interests
    AJ Venkatakrishnan, Author is an employee of nference.
  5. Venky Soundararajan

    R&D, nference, Cambridge, United States
    For correspondence
    venky@nference.net
    Competing interests
    Venky Soundararajan, The author is an employee of nference..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7434-9211

Funding

The authors declare that there was no external funding for this work.

Reviewing Editor

  1. Gian Paolo Rossi, University of Padova, Italy

Version history

  1. Received: May 5, 2020
  2. Accepted: May 25, 2020
  3. Accepted Manuscript published: May 26, 2020 (version 1)
  4. Version of Record published: July 8, 2020 (version 2)

Copyright

© 2020, Anand et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 20,329
    views
  • 2,400
    downloads
  • 107
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Praveen Anand
  2. Arjun Puranik
  3. Murali Aravamudan
  4. AJ Venkatakrishnan
  5. Venky Soundararajan
(2020)
SARS-CoV-2 strategically mimics proteolytic activation of human ENaC
eLife 9:e58603.
https://doi.org/10.7554/eLife.58603

Share this article

https://doi.org/10.7554/eLife.58603

Further reading

    1. Computational and Systems Biology
    Maksim Kleverov, Daria Zenkova ... Alexey A Sergushichev
    Research Article

    Transcriptomic profiling became a standard approach to quantify a cell state, which led to accumulation of huge amount of public gene expression datasets. However, both reuse of these datasets or analysis of newly generated ones requires significant technical expertise. Here we present Phantasus - a user-friendly web-application for interactive gene expression analysis which provides a streamlined access to more than 96000 public gene expression datasets, as well as allows analysis of user-uploaded datasets. Phantasus integrates an intuitive and highly interactive JavaScript-based heatmap interface with an ability to run sophisticated R-based analysis methods. Overall Phantasus allows users to go all the way from loading, normalizing and filtering data to doing differential gene expression and downstream analysis. Phantasus can be accessed on-line at https://alserglab.wustl.edu/phantasus or can be installed locally from Bioconductor (https://bioconductor.org/packages/phantasus). Phantasus source code is available at https://github.com/ctlab/phantasus under MIT license.

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.