Early analysis of the Australian COVID-19 epidemic

  1. David J Price  Is a corresponding author
  2. Freya M Shearer  Is a corresponding author
  3. Michael T Meehan
  4. Emma McBryde
  5. Robert Moss
  6. Nick Golding
  7. Eamon J Conway
  8. Peter Dawson
  9. Deborah Cromer
  10. James Wood
  11. Sam Abbott
  12. Jodie McVernon
  13. James M McCaw
  1. The University of Melbourne, Australia
  2. James Cook University, Australia
  3. Wellcome Trust Centre for Human Genetics, United Kingdom
  4. Department of Defence, Australia
  5. University of New South Wales, Australia
  6. London School of Hygiene and Tropical Medicine, United Kingdom

Abstract

As of 1 May 2020, there had been 6,808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. The epidemic had been in decline since mid-March, with 308 cases confirmed nationally since 14 April. This suggests that the collective actions of the Australian public and government authorities in response to COVID-19 were sufficiently early and assiduous to avert a public health crisis — for now. Analysing factors that contribute to individual country experiences of COVID-19, such as the intensity and timing of public health interventions, will assist in the next stage of response planning globally. We describe how the epidemic and public health response unfolded in Australia up to 13 April. We estimate that the effective reproduction number was likely below 1 in each Australian state since mid-March and forecast that clinical demand would remain below capacity thresholds over the forecast period (from mid-to-late April).

Data availability

Analysis code is included in the supplementary materials. Datasets analysed and generated during this study are included in the supplementary materials. For estimates of the time-varying effective reproduction number (Figure 2), the complete line listed data within the Australian national COVID-19 database are not publicly available. However, we provide the cases per day by notification date and state (as shown in Figures 1 and S1) which, when supplemented with the estimated distribution of the delay from symptom onset to notification (samples from this distribution are provided as a data file), analyses of the time-varying effective reproduction number can be performed.

Article and author information

Author details

  1. David J Price

    Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
    For correspondence
    david.price1@unimelb.edu.au
    Competing interests
    David J Price, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  2. Freya M Shearer

    School of Population and Global Health, The University of Melbourne, Melbourne, Australia
    For correspondence
    freya.shearer@unimelb.edu.au
    Competing interests
    Freya M Shearer, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9600-3473
  3. Michael T Meehan

    Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
    Competing interests
    Michael T Meehan, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  4. Emma McBryde

    Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
    Competing interests
    Emma McBryde, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  5. Robert Moss

    School of Population and Global Health, The University of Melbourne, Melbourne, Australia
    Competing interests
    Robert Moss, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  6. Nick Golding

    Spatial Ecology and Epidemiology Group, Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
    Competing interests
    Nick Golding, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  7. Eamon J Conway

    Victorian Infectious Diseases Reference Laboratory Epidemiology Unit at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
    Competing interests
    Eamon J Conway, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  8. Peter Dawson

    Defence Science and Technology, Department of Defence, Melbourne, Australia
    Competing interests
    Peter Dawson, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  9. Deborah Cromer

    Infection Analytics Program, Kirby Institute for Infection and Immunity, University of New South Wales, Sydney, Australia
    Competing interests
    Deborah Cromer, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  10. James Wood

    School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
    Competing interests
    James Wood, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  11. Sam Abbott

    Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
    Competing interests
    Sam Abbott, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  12. Jodie McVernon

    Population health, The University of Melbourne, Parkville, Australia
    Competing interests
    Jodie McVernon, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
  13. James M McCaw

    School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
    Competing interests
    James M McCaw, This work was undertaken with direct funding support from the Australian Government Department of Health, Office of Health Protection and has assisted the Australian Government in its epidemic response activities..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2452-3098

Funding

Department of Health, Australian Government (NA)

  • James M McCaw

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ben S Cooper, Mahidol University, Thailand

Version history

  1. Received: May 11, 2020
  2. Accepted: August 12, 2020
  3. Accepted Manuscript published: August 13, 2020 (version 1)
  4. Version of Record published: August 26, 2020 (version 2)

Copyright

© 2020, Price et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,505
    views
  • 471
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David J Price
  2. Freya M Shearer
  3. Michael T Meehan
  4. Emma McBryde
  5. Robert Moss
  6. Nick Golding
  7. Eamon J Conway
  8. Peter Dawson
  9. Deborah Cromer
  10. James Wood
  11. Sam Abbott
  12. Jodie McVernon
  13. James M McCaw
(2020)
Early analysis of the Australian COVID-19 epidemic
eLife 9:e58785.
https://doi.org/10.7554/eLife.58785

Share this article

https://doi.org/10.7554/eLife.58785

Further reading

    1. Epidemiology and Global Health
    Xiaoxin Yu, Roger S Zoh ... David B Allison
    Review Article

    We discuss 12 misperceptions, misstatements, or mistakes concerning the use of covariates in observational or nonrandomized research. Additionally, we offer advice to help investigators, editors, reviewers, and readers make more informed decisions about conducting and interpreting research where the influence of covariates may be at issue. We primarily address misperceptions in the context of statistical management of the covariates through various forms of modeling, although we also emphasize design and model or variable selection. Other approaches to addressing the effects of covariates, including matching, have logical extensions from what we discuss here but are not dwelled upon heavily. The misperceptions, misstatements, or mistakes we discuss include accurate representation of covariates, effects of measurement error, overreliance on covariate categorization, underestimation of power loss when controlling for covariates, misinterpretation of significance in statistical models, and misconceptions about confounding variables, selecting on a collider, and p value interpretations in covariate-inclusive analyses. This condensed overview serves to correct common errors and improve research quality in general and in nutrition research specifically.

    1. Ecology
    2. Epidemiology and Global Health
    Emilia Johnson, Reuben Sunil Kumar Sharma ... Kimberly Fornace
    Research Article

    Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.