Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer disease related oligomers

Abstract

The formation of oligomers of the amyloid-β peptide plays a key role in the onset of Alzheimer's disease. We describe herein the investigation of disease-relevant small amyloid-β oligomers by mass spectrometry and ion mobility spectrometry, revealing functionally relevant structural attributes. In particular we can show that amyloid-β oligomers develop in two distinct arrangements leading to either neurotoxic oligomers and fibrils or non-toxic amorphous aggregates. Comprehending the key-attributes responsible for those pathways on a molecular level is a pre-requisite to specifically target the peptide's tertiary structure with the aim to promote the emergence of non-toxic aggregates. Here we show for two fibril inhibiting ligands, an ionic molecular tweezer and a hydrophobic peptide that despite their different interaction mechanisms, the suppression of the fibril pathway can be deduced from the disappearance of the corresponding structure of the first amyloid-β oligomers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Tobias Lieblein

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6497-1733
  2. Rene Zangl

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Janosch Martin

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Hoffmann

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marie J Hutchison

    Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Tina Stark

    Institute for Organic Chemistry and Chemical Biology, Goethe-University, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Elke Stirnal

    Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thomas Schrader

    Department of Chemistry, University of Duisburg-Essen, Essen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Harald Schwalbe

    Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Nina Morgner

    Institute of Physical and Theoretical Chemistry, Goethe-University, Frankfurt, Germany
    For correspondence
    morgner@chemie.uni-frankfurt.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1872-490X

Funding

Deutsche Forschungsgemeinschaft (GRK1986)

  • Nina Morgner

LOEWE Schwerpunkt from State of Hesse (GLUE)

  • Nina Morgner

Cluster of Excellence Frankfurt (MacromolecularComplexes)

  • Nina Morgner

Deutsche Forschungsgemeinschaft (Heisenbergprofessorship)

  • Nina Morgner

Deutsche Forschungsgemeinschaft (CRC1093)

  • Thomas Schrader

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John Kuriyan, University of California, Berkeley, United States

Version history

  1. Received: May 25, 2020
  2. Accepted: October 22, 2020
  3. Accepted Manuscript published: October 23, 2020 (version 1)
  4. Version of Record published: November 23, 2020 (version 2)

Copyright

© 2020, Lieblein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,761
    views
  • 297
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tobias Lieblein
  2. Rene Zangl
  3. Janosch Martin
  4. Jan Hoffmann
  5. Marie J Hutchison
  6. Tina Stark
  7. Elke Stirnal
  8. Thomas Schrader
  9. Harald Schwalbe
  10. Nina Morgner
(2020)
Structural rearrangement of amyloid-β upon inhibitor binding suppresses formation of Alzheimer disease related oligomers
eLife 9:e59306.
https://doi.org/10.7554/eLife.59306

Share this article

https://doi.org/10.7554/eLife.59306

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.