Decoding subjective emotional arousal from eeg during an immersive virtual reality experience

  1. Simon M Hofmann  Is a corresponding author
  2. Felix Klotzsche  Is a corresponding author
  3. Alberto Mariola  Is a corresponding author
  4. Vadim Nikulin
  5. Arno Villringer
  6. Michael Gaebler  Is a corresponding author
  1. Max Planck Institute for Human Cognitive and Brain Sciences, Germany
  2. University of Sussex, United Kingdom

Abstract

Immersive virtual reality (VR) enables naturalistic neuroscientific studies while maintaining experimental control, but dynamic and interactive stimuli pose methodological challenges. We here probed the link between emotional arousal, a fundamental property of affective experience, and parieto-occipital alpha power under naturalistic stimulation: 37 young healthy adults completed an immersive VR experience, which included rollercoaster rides, while their EEG was recorded. They then continuously rated their subjective emotional arousal while viewing a replay of their experience. The association between emotional arousal and parieto-occipital alpha power was tested and confirmed by (1) decomposing the continuous EEG signal while maximizing the comodulation between alpha power and arousal ratings and by (2) decoding periods of high and low arousal with discriminative common spatial patterns and a Long Short-Term Memory recurrent neural network. We successfully combine EEG and a naturalistic immersive VR experience to extend previous findings on the neurophysiology of emotional arousal towards real-world neuroscience.

Data availability

We did not obtain participants' consent to release their individual data. Since our analyses focus on the single-subject level, we have only limited data which are sufficiently anonymized (e.g., summarized or averaged) to be publicly shared. Wherever possible, we provide "source data" to reproduce the manuscript's tables and figures (Figures 2, 4, 8 and 10). The scripts of all analyses are available at https://github.com/SHEscher/NeVRo

Article and author information

Author details

  1. Simon M Hofmann

    Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    simon.hofmann@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0958-501X
  2. Felix Klotzsche

    Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    klotzsche@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3985-2481
  3. Alberto Mariola

    Informatics, University of Sussex, Brighton, United Kingdom
    For correspondence
    a.mariola@sussex.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  4. Vadim Nikulin

    Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Arno Villringer

    Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael Gaebler

    Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
    For correspondence
    gaebler@cbs.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Funding

Bundesministerium für Bildung und Forschung (13GW0206)

  • Felix Klotzsche
  • Michael Gaebler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Alexander Shackman, University of Maryland, United States

Ethics

Human subjects: Participants signed informed consent before their participation, and the study was approved by the Ethics Committee of the Department of Psychology at the Humboldt-Universität zu Berlin (vote no. 2017-22).

Version history

  1. Preprint posted: October 25, 2020 (view preprint)
  2. Received: November 11, 2020
  3. Accepted: October 27, 2021
  4. Accepted Manuscript published: October 28, 2021 (version 1)
  5. Version of Record published: December 15, 2021 (version 2)

Copyright

© 2021, Hofmann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,498
    views
  • 711
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon M Hofmann
  2. Felix Klotzsche
  3. Alberto Mariola
  4. Vadim Nikulin
  5. Arno Villringer
  6. Michael Gaebler
(2021)
Decoding subjective emotional arousal from eeg during an immersive virtual reality experience
eLife 10:e64812.
https://doi.org/10.7554/eLife.64812

Share this article

https://doi.org/10.7554/eLife.64812

Further reading

    1. Neuroscience
    Evan D Vickers, David A McCormick
    Tools and Resources

    The flow of neural activity across the neocortex during active sensory discrimination is constrained by task-specific cognitive demands, movements, and internal states. During behavior, the brain appears to sample from a broad repertoire of activation motifs. Understanding how these patterns of local and global activity are selected in relation to both spontaneous and task-dependent behavior requires in-depth study of densely sampled activity at single neuron resolution across large regions of cortex. In a significant advance toward this goal, we developed procedures to record mesoscale 2-photon Ca2+ imaging data from two novel in vivo preparations that, between them, allow for simultaneous access to nearly all 0f the mouse dorsal and lateral neocortex. As a proof of principle, we aligned neural activity with both behavioral primitives and high-level motifs to reveal the existence of large populations of neurons that coordinated their activity across cortical areas with spontaneous changes in movement and/or arousal. The methods we detail here facilitate the identification and exploration of widespread, spatially heterogeneous neural ensembles whose activity is related to diverse aspects of behavior.

    1. Neuroscience
    Simon Kern, Juliane Nagel ... Gordon B Feld
    Research Article

    Declarative memory retrieval is thought to involve reinstatement of neuronal activity patterns elicited and encoded during a prior learning episode. Furthermore, it is suggested that two mechanisms operate during reinstatement, dependent on task demands: individual memory items can be reactivated simultaneously as a clustered occurrence or, alternatively, replayed sequentially as temporally separate instances. In the current study, participants learned associations between images that were embedded in a directed graph network and retained this information over a brief 8 min consolidation period. During a subsequent cued recall session, participants retrieved the learned information while undergoing magnetoencephalographic recording. Using a trained stimulus decoder, we found evidence for clustered reactivation of learned material. Reactivation strength of individual items during clustered reactivation decreased as a function of increasing graph distance, an ordering present solely for successful retrieval but not for retrieval failure. In line with previous research, we found evidence that sequential replay was dependent on retrieval performance and was most evident in low performers. The results provide evidence for distinct performance-dependent retrieval mechanisms, with graded clustered reactivation emerging as a plausible mechanism to search within abstract cognitive maps.