Abstract

The hippocampal dentate gyrus is an important relay conveying sensory information from the entorhinal cortex to the hippocampus proper. During exploration, the dentate gyrus has been proposed to act as a pattern separator. However, the dentate gyrus also shows structured activity during immobility and sleep. The properties of these activity patterns at cellular resolution, and their role in hippocampal-dependent memory processes have remained unclear. Using dual-color in-vivo two-photon Ca2+ imaging, we show that in immobile mice dentate granule cells generate sparse, synchronized activity patterns associated with entorhinal cortex activation. These population events are structured and modified by changes in the environment; and they incorporate place- and speed cells. Importantly, they are more similar than expected by chance to population patterns evoked during self-motion. Using optogenetic inhibition, we show that granule cell activity is not only required during exploration, but also during immobility in order to form dentate gyrus-dependent spatial memories.

Data availability

Binarized imaging traces of all cells from all experiment sessions are available on Dryad. https://doi.org/10.5061/dryad.mkkwh70z6.

The following data sets were generated

Article and author information

Author details

  1. Martin Pofahl

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9473-6195
  2. Negar Nikbakht

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. André N Haubrich

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7895-6203
  4. Theresa M Nguyen

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicola Masala

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian J Distler

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Oliver Braganza

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8508-1070
  8. Jakob H Macke

    Excellence Cluster Machine Learning, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5154-8912
  9. Laura A Ewell

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Kurtulus Golcuk

    Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, University of Bonn Medical Center, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Heinz Beck

    IEECR, University of Bonn Medical Center, Bonn, Germany
    For correspondence
    heinz.beck@ukbonn.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8961-998X

Funding

Deutsche Forschungsgemeinschaft (SFB 1089,Project C04)

  • Heinz Beck

Deutsche Forschungsgemeinschaft (EXC 2064/1 PN 390727645)

  • Jakob H Macke
  • Heinz Beck

Alexander von Humboldt-Stiftung (PSI)

  • Kurtulus Golcuk

Volkswagen Foundation

  • Oliver Braganza
  • Laura A Ewell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura L Colgin, University of Texas at Austin, United States

Ethics

Animal experimentation: All animal experiments were conducted in accordance with European (2010/63/EU) and federal law (TierSchG, TierSchVersV) on animal care and use and approved by the county of North-Rhine Westphalia (LANUV AZ 84-02.04.2015.A524, AZ 81-02.04.2019.A216).

Version history

  1. Received: December 15, 2020
  2. Accepted: March 11, 2021
  3. Accepted Manuscript published: March 12, 2021 (version 1)
  4. Version of Record published: March 23, 2021 (version 2)

Copyright

© 2021, Pofahl et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,016
    views
  • 488
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Martin Pofahl
  2. Negar Nikbakht
  3. André N Haubrich
  4. Theresa M Nguyen
  5. Nicola Masala
  6. Fabian J Distler
  7. Oliver Braganza
  8. Jakob H Macke
  9. Laura A Ewell
  10. Kurtulus Golcuk
  11. Heinz Beck
(2021)
Synchronous activity patterns in the dentate gyrus during immobility
eLife 10:e65786.
https://doi.org/10.7554/eLife.65786

Share this article

https://doi.org/10.7554/eLife.65786

Further reading

    1. Neuroscience
    Ya-Hui Lin, Li-Wen Wang ... Li-An Chu
    Research Article

    Tissue-clearing and labeling techniques have revolutionized brain-wide imaging and analysis, yet their application to clinical formalin-fixed paraffin-embedded (FFPE) blocks remains challenging. We introduce HIF-Clear, a novel method for efficiently clearing and labeling centimeter-thick FFPE specimens using elevated temperature and concentrated detergents. HIF-Clear with multi-round immunolabeling reveals neuron circuitry regulating multiple neurotransmitter systems in a whole FFPE mouse brain and is able to be used as the evaluation of disease treatment efficiency. HIF-Clear also supports expansion microscopy and can be performed on a non-sectioned 15-year-old FFPE specimen, as well as a 3-month formalin-fixed mouse brain. Thus, HIF-Clear represents a feasible approach for researching archived FFPE specimens for future neuroscientific and 3D neuropathological analyses.

    1. Neuroscience
    Amanda Chu, Nicholas T Gordon ... Michael A McDannald
    Research Article

    Pavlovian fear conditioning has been extensively used to study the behavioral and neural basis of defensive systems. In a typical procedure, a cue is paired with foot shock, and subsequent cue presentation elicits freezing, a behavior theoretically linked to predator detection. Studies have since shown a fear conditioned cue can elicit locomotion, a behavior that - in addition to jumping, and rearing - is theoretically linked to imminent or occurring predation. A criticism of studies observing fear conditioned cue-elicited locomotion is that responding is non-associative. We gave rats Pavlovian fear discrimination over a baseline of reward seeking. TTL-triggered cameras captured 5 behavior frames/s around cue presentation. Experiment 1 examined the emergence of danger-specific behaviors over fear acquisition. Experiment 2 examined the expression of danger-specific behaviors in fear extinction. In total, we scored 112,000 frames for nine discrete behavior categories. Temporal ethograms show that during acquisition, a fear conditioned cue suppresses reward seeking and elicits freezing, but also elicits locomotion, jumping, and rearing - all of which are maximal when foot shock is imminent. During extinction, a fear conditioned cue most prominently suppresses reward seeking, and elicits locomotion that is timed to shock delivery. The independent expression of these behaviors in both experiments reveal a fear conditioned cue to orchestrate a temporally organized suite of behaviors.