Modeling the impact of racial and ethnic disparities on COVID-19 epidemic dynamics

  1. Kevin C Ma  Is a corresponding author
  2. Tigist F Menkir
  3. Stephen M Kissler
  4. Yonatan H Grad
  5. Marc Lipsitch
  1. Harvard TH Chan School of Public Health, United States

Abstract

Background: The impact of variable infection risk by race and ethnicity on the dynamics of SARS CoV-2 spread is largely unknown.

Methods: Here, we fit structured compartmental models to seroprevalence data from New York State and analyze how herd immunity thresholds (HITs), final sizes, and epidemic risk changes across groups.

Results: A simple model where interactions occur proportionally to contact rates reduced the HIT, but more realistic models of preferential mixing within groups increased the threshold toward the value observed in homogeneous populations. Across all models, the burden of infection fell disproportionately on minority populations: in a model fit to Long Island serosurvey and census data, 81% of Hispanics or Latinos were infected when the HIT was reached compared to 34% of non-Hispanic whites.

Conclusions: Our findings, which are meant to be illustrative and not best estimates, demonstrate how racial and ethnic disparities can impact epidemic trajectories and result in unequal distributions of SARS-CoV-2 infection.

Funding: K.C.M. was supported by National Science Foundation GRFP grant DGE1745303. Y.H.G. and M.L. were funded by the Morris-Singer Foundation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Kevin C Ma

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    For correspondence
    kevinchenma@g.harvard.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4326-2911
  2. Tigist F Menkir

    Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  3. Stephen M Kissler

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3062-7800
  4. Yonatan H Grad

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5646-1314
  5. Marc Lipsitch

    Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States
    Competing interests
    Marc Lipsitch, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1504-9213

Funding

National Science Foundation (DGE1745303)

  • Kevin C Ma

Morris-Singer Foundation

  • Yonatan H Grad
  • Marc Lipsitch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joshua T Schiffer, Fred Hutchinson Cancer Research Center, United States

Version history

  1. Received: January 15, 2021
  2. Accepted: May 17, 2021
  3. Accepted Manuscript published: May 18, 2021 (version 1)
  4. Accepted Manuscript updated: May 24, 2021 (version 2)
  5. Version of Record published: June 23, 2021 (version 3)

Copyright

© 2021, Ma et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,333
    views
  • 336
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin C Ma
  2. Tigist F Menkir
  3. Stephen M Kissler
  4. Yonatan H Grad
  5. Marc Lipsitch
(2021)
Modeling the impact of racial and ethnic disparities on COVID-19 epidemic dynamics
eLife 10:e66601.
https://doi.org/10.7554/eLife.66601

Share this article

https://doi.org/10.7554/eLife.66601

Further reading

    1. Epidemiology and Global Health
    Xiaoxin Yu, Roger S Zoh ... David B Allison
    Review Article

    We discuss 12 misperceptions, misstatements, or mistakes concerning the use of covariates in observational or nonrandomized research. Additionally, we offer advice to help investigators, editors, reviewers, and readers make more informed decisions about conducting and interpreting research where the influence of covariates may be at issue. We primarily address misperceptions in the context of statistical management of the covariates through various forms of modeling, although we also emphasize design and model or variable selection. Other approaches to addressing the effects of covariates, including matching, have logical extensions from what we discuss here but are not dwelled upon heavily. The misperceptions, misstatements, or mistakes we discuss include accurate representation of covariates, effects of measurement error, overreliance on covariate categorization, underestimation of power loss when controlling for covariates, misinterpretation of significance in statistical models, and misconceptions about confounding variables, selecting on a collider, and p value interpretations in covariate-inclusive analyses. This condensed overview serves to correct common errors and improve research quality in general and in nutrition research specifically.

    1. Ecology
    2. Epidemiology and Global Health
    Emilia Johnson, Reuben Sunil Kumar Sharma ... Kimberly Fornace
    Research Article

    Zoonotic disease dynamics in wildlife hosts are rarely quantified at macroecological scales due to the lack of systematic surveys. Non-human primates (NHPs) host Plasmodium knowlesi, a zoonotic malaria of public health concern and the main barrier to malaria elimination in Southeast Asia. Understanding of regional P. knowlesi infection dynamics in wildlife is limited. Here, we systematically assemble reports of NHP P. knowlesi and investigate geographic determinants of prevalence in reservoir species. Meta-analysis of 6322 NHPs from 148 sites reveals that prevalence is heterogeneous across Southeast Asia, with low overall prevalence and high estimates for Malaysian Borneo. We find that regions exhibiting higher prevalence in NHPs overlap with human infection hotspots. In wildlife and humans, parasite transmission is linked to land conversion and fragmentation. By assembling remote sensing data and fitting statistical models to prevalence at multiple spatial scales, we identify novel relationships between P. knowlesi in NHPs and forest fragmentation. This suggests that higher prevalence may be contingent on habitat complexity, which would begin to explain observed geographic variation in parasite burden. These findings address critical gaps in understanding regional P. knowlesi epidemiology and indicate that prevalence in simian reservoirs may be a key spatial driver of human spillover risk.