Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis

  1. Michal Motyka
  2. Dominik Kusy
  3. Matej Bocek
  4. Renata Bilkova
  5. Ladislav Bocak  Is a corresponding author
  1. Czech Advanced Technology Research Institute, Czech Republic

Abstract

Conservation efforts must be evidence-based, so rapid and economically feasible methods should be used to quantify diversity and distribution patterns. We have attempted to overcome current impediments to the gathering of biodiversity data by using integrative phylogenomic and three mtDNA fragment analyses. As a model, we sequenced the Metriorrhynchini beetle fauna, sampled from ~700 localities in three continents. The species-rich dataset included ~6,500 terminals, ~1,850 putative species delimited at 5% uncorrected pairwise threshold, possibly ~1,000 of them unknown to science. Neither type of data could alone answer our questions on biodiversity and phylogeny. The phylogenomic backbone enabled the integrative delimitation of robustly defined natural genus-group units that will inform future research. Using constrained mtDNA analysis, we identified the spatial structure of species diversity, very high species-level endemism, and a biodiversity hotspot in New Guinea. We suggest that focused field research and subsequent laboratory and bioinformatic workflow steps would substantially accelerate the inventorying of any hyperdiverse tropical group with several thousand species. The outcome would be a scaffold for the incorporation of further data from environmental sequencing and ecological studies. The database of sequences could set a benchmark for the spatiotemporal evaluation of biodiversity, would support evidence-based conservation planning, and would provide a robust framework for systematic, biogeographic, and evolutionary studies.

Data availability

All datasets are deposited in the Mendeley Data repository DOI: 10.17632/ntgg6k4fjx.1.

The following data sets were generated

Article and author information

Author details

  1. Michal Motyka

    Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Dominik Kusy

    Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  3. Matej Bocek

    Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3398-6078
  4. Renata Bilkova

    Laboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Ladislav Bocak

    ZoologyLaboratory of Biodiversity and Molecular Evolution, Czech Advanced Technology Research Institute, Olomouc, Czech Republic
    For correspondence
    ladislav.bocak@upol.cz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6382-8006

Funding

Grantova agentura Ceske republiky (18-14942S)

  • Ladislav Bocak

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Donoso, Escuela Politécnica Nacional, Ecuador

Version history

  1. Received: July 2, 2021
  2. Preprint posted: July 15, 2021 (view preprint)
  3. Accepted: December 18, 2021
  4. Accepted Manuscript published: December 20, 2021 (version 1)
  5. Version of Record published: January 28, 2022 (version 2)

Copyright

© 2021, Motyka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 956
    views
  • 158
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michal Motyka
  2. Dominik Kusy
  3. Matej Bocek
  4. Renata Bilkova
  5. Ladislav Bocak
(2021)
Phylogenomic and mitogenomic data can accelerate inventorying of tropical beetles during the current biodiversity crisis
eLife 10:e71895.
https://doi.org/10.7554/eLife.71895

Share this article

https://doi.org/10.7554/eLife.71895

Further reading

    1. Ecology
    2. Evolutionary Biology
    Théo Constant, F Stephen Dobson ... Sylvain Giroud
    Research Article

    Seasonal animal dormancy is widely interpreted as a physiological response for surviving energetic challenges during the harshest times of the year (the physiological constraint hypothesis). However, there are other mutually non-exclusive hypotheses to explain the timing of animal dormancy, that is, entry into and emergence from hibernation (i.e. dormancy phenology). Survival advantages of dormancy that have been proposed are reduced risks of predation and competition (the ‘life-history’ hypothesis), but comparative tests across animal species are few. Using the phylogenetic comparative method applied to more than 20 hibernating mammalian species, we found support for both hypotheses as explanations for the phenology of dormancy. In accordance with the life-history hypotheses, sex differences in hibernation emergence and immergence were favored by the sex difference in reproductive effort. In addition, physiological constraint may influence the trade-off between survival and reproduction such that low temperatures and precipitation, as well as smaller body mass, influence sex differences in phenology. We also compiled initial evidence that ectotherm dormancy may be (1) less temperature dependent than previously thought and (2) associated with trade-offs consistent with the life-history hypothesis. Thus, dormancy during non-life-threatening periods that are unfavorable for reproduction may be more widespread than previously thought.

    1. Ecology
    Ari Grele, Tara J Massad ... Lora A Richards
    Research Article

    Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.