Colicin E1 opens its hinge to plug TolC

  1. S Jimmy Budiardjo
  2. Jacqueline J Stevens
  3. Anna L Calkins
  4. Ayotunde P Ikujuni
  5. Virangika K Wimalasena
  6. Emre Firlar
  7. David A Case
  8. Julie S Biteen
  9. Jason T Kaelber
  10. Joanna SG Slusky  Is a corresponding author
  1. University of Kansas, United States
  2. University of Michigan, United States
  3. Rutgers University, United States
  4. Rutgers, The State University of New Jersey, United States

Abstract

The double membrane architecture of Gram-negative bacteria forms a barrier that is impermeable to most extracellular threats. Bacteriocin proteins evolved to exploit the accessible, surface-exposed proteins embedded in the outer membrane to deliver cytotoxic cargo. Colicin E1 is a bacteriocin produced by, and lethal to, Escherichia coli that hijacks the outer membrane proteins TolC and BtuB to enter the cell. Here we capture the colicin E1 translocation domain inside its membrane receptor, TolC, by high-resolution cryoEM to obtain the first reported structure of a bacteriocin bound to TolC. Colicin E1 binds stably to TolC as an open hinge through the TolC pore-an architectural rearrangement from colicin E1's unbound conformation. This binding is stable in live E. coli cells as indicated by single-molecule fluorescence microscopy. Finally, colicin E1 fragments binding to TolC plug the channel, inhibiting its native efflux function as an antibiotic efflux pump and heightening susceptibility to three antibiotic classes. In addition to demonstrating that these protein fragments are useful starting points for developing novel antibiotic potentiators, this method could be expanded to other colicins to inhibit other outer membrane protein functions.

Data availability

The manuscript has been deposited in BioRXiv BIORXIV/2019/692251CryoEM maps and models have been deposited with accession codes EMD-21960, EMD-21959, PDB ID 6WXI, and PDB ID 6WXH. The following data are publically available for the two structures:6WXH TolC + colE1Structure: https://files.rcsb.org/download/6WXH.cifEM map: https://ftp.wwpdb.org/pub/emdb/structures/EMD-21959/map/emd_21959.map.gzValidation report: https://files.rcsb.org/pub/pdb/validation_reports/wx/6wxh/6wxh_full_validation.pdf6WXI TolC aloneStructure: https://files.rcsb.org/download/6WXI.cifEM map: https://ftp.wwpdb.org/pub/emdb/structures/EMD-21960/map/emd_21960.map.gzValidation report: https://files.rcsb.org/pub/pdb/validation_reports/wx/6wxi/6wxi_full_validation.pdf

The following data sets were generated

Article and author information

Author details

  1. S Jimmy Budiardjo

    Center for Computational Biology, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2094-9179
  2. Jacqueline J Stevens

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2235-0522
  3. Anna L Calkins

    Department of Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ayotunde P Ikujuni

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8951-3440
  5. Virangika K Wimalasena

    Department of Molecular Biosciences, University of Kansas, Lawrence, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1061-3439
  6. Emre Firlar

    Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. David A Case

    Institute for Quantitative Biomedicine, Rutgers University, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Julie S Biteen

    Department of Chemistry, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2038-6484
  9. Jason T Kaelber

    Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9426-1030
  10. Joanna SG Slusky

    Center for Computational Biology, University of Kansas, Lawrence, United States
    For correspondence
    slusky@ku.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0842-6340

Funding

National Institute of General Medical Sciences (DP2GM128201)

  • Joanna SG Slusky

National Institute of General Medical Sciences (P20GM113117)

  • Joanna SG Slusky

National Institute of General Medical Sciences (P20GM103638)

  • Joanna SG Slusky

Gordon and Betty Moore Foundation (Moore Inventor Fellowship)

  • Joanna SG Slusky

National Institute of General Medical Sciences (P20 GM103418)

  • S Jimmy Budiardjo

National Institute of General Medical Sciences (2K12GM063651)

  • S Jimmy Budiardjo

National Institute of General Medical Sciences (R21-GM128022)

  • Julie S Biteen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. David Drew, Stockholm University, Sweden

Version history

  1. Preprint posted: July 4, 2019 (view preprint)
  2. Received: August 24, 2021
  3. Accepted: February 21, 2022
  4. Accepted Manuscript published: February 24, 2022 (version 1)
  5. Version of Record published: April 20, 2022 (version 2)

Copyright

© 2022, Budiardjo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,871
    views
  • 441
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. S Jimmy Budiardjo
  2. Jacqueline J Stevens
  3. Anna L Calkins
  4. Ayotunde P Ikujuni
  5. Virangika K Wimalasena
  6. Emre Firlar
  7. David A Case
  8. Julie S Biteen
  9. Jason T Kaelber
  10. Joanna SG Slusky
(2022)
Colicin E1 opens its hinge to plug TolC
eLife 11:e73297.
https://doi.org/10.7554/eLife.73297

Share this article

https://doi.org/10.7554/eLife.73297

Further reading

    1. Genetics and Genomics
    2. Microbiology and Infectious Disease
    Jason E Stajich, Brian Lovett ... Carolyn Elya
    Research Article

    Despite over a century of observations, the obligate insect parasites within the order Entomophthorales remain poorly characterized at the genetic level. In this manuscript, we present a genome for a laboratory-tractable Entomophthora muscae isolate that infects fruit flies. Our E. muscae assembly is 1.03 Gb, consists of 7810 contigs and contains 81.3% complete fungal BUSCOs. Using a comparative approach with recent datasets from entomophthoralean fungi, we show that giant genomes are the norm within Entomophthoraceae owing to extensive, but not recent, Ty3 retrotransposon activity. In addition, we find that E. muscae and its closest allies possess genes that are likely homologs to the blue-light sensor white-collar 1, a Neurospora crassa gene that has a well-established role in maintaining circadian rhythms. We uncover evidence that E. muscae diverged from other entomophthoralean fungi by expansion of existing families, rather than loss of particular domains, and possesses a potentially unique suite of secreted catabolic enzymes, consistent with E. muscae’s species-specific, biotrophic lifestyle. Finally, we offer a head-to-head comparison of morphological and molecular data for species within the E. muscae species complex that support the need for taxonomic revision within this group. Altogether, we provide a genetic and molecular foundation that we hope will provide a platform for the continued study of the unique biology of entomophthoralean fungi.

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Clara Akpan
    Insight

    Systematically tracking and analysing reproductive loss in livestock helps with efforts to safeguard the health and productivity of food animals by identifying causes and high-risk areas.