Internally generated time in the rodent hippocampus is logarithmically compressed

  1. Rui Cao  Is a corresponding author
  2. John H Bladon
  3. Stephen J Charczynski
  4. Michael E Hasselmo
  5. Marc W Howard
  1. Boston University, United States
  2. Brandeis University, United States

Abstract

The Weber-Fechner law proposes that our perceived sensory input increases with physical input on a logarithmic scale. Hippocampal 'time cells' carry a record of recent experience by firing sequentially during a circumscribed period of time after a triggering stimulus. Different cells have'time fields' at different delays up to at least tens of seconds. Past studies suggest that time cells represent a compressed timeline by demonstrating that fewer time cells fire late in the delay and their time fields are wider. This paper asks whether the compression of time cells obeys the Weber-Fechner Law. Time cells were studied with a hierarchical Bayesian model that simultaneously accounts for the firing pattern at the trial level, cell level, and population level. This procedure allows separate estimates of the within-trial receptive field width and the across-trial variability. After isolating across-trial variability, time field width increased linearly with delay. Further, the time cell population was distributed evenly along a logarithmic time axis. These findings provide strong quantitative evidence that the neural temporal representation in rodent hippocampus is logarithmically compressed and obeys a neural Weber-Fechner Law.

Data availability

The data and code for all the analysis is available on Open Science Framework under the corresponding author (https://osf.io/pqhjz/)

The following data sets were generated

Article and author information

Author details

  1. Rui Cao

    Department of Psychological and Brain Sciences, Boston University, Boston, United States
    For correspondence
    caorui.beilia@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0538-5336
  2. John H Bladon

    Department of Psychology, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stephen J Charczynski

    Department of Psychological and Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michael E Hasselmo

    Department of Psychological and Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Marc W Howard

    Department of Psychological and Brain Sciences, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1478-1237

Funding

Multidisciplinary University Research Initiative (N00014-16-1-2832)

  • Rui Cao
  • Stephen J Charczynski
  • Michael E Hasselmo
  • Marc W Howard

National Institute of Biomedical Imaging and Bioengineering (R01EB022864)

  • Rui Cao
  • Stephen J Charczynski
  • Marc W Howard

National Institute of Mental Health (R01MH112169)

  • Rui Cao
  • John H Bladon
  • Stephen J Charczynski
  • Marc W Howard

National Institute of Mental Health (R01MH095297)

  • Rui Cao
  • John H Bladon
  • Stephen J Charczynski
  • Michael E Hasselmo
  • Marc W Howard

National Institute of Mental Health (R01MH132171)

  • John H Bladon
  • Michael E Hasselmo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo Merchant, National Autonomous University of Mexico, Mexico

Ethics

Animal experimentation: All procedures were conducted in accordance with the requirements set by the National Institutes of Health, and were approved by the Boston University Institutional Animal Care and Use Committee (BU IACUC protocol #16-021). Animals were given ad-libitum water and maintained at a minimum of 85% of their ad libitum feeding body weight during all behavioral training and testing. Surgeries were performed under isoflurane anesthesia, and analgesics were administered postoperatively.

Version history

  1. Preprint posted: October 26, 2021 (view preprint)
  2. Received: November 8, 2021
  3. Accepted: October 14, 2022
  4. Accepted Manuscript published: October 17, 2022 (version 1)
  5. Version of Record published: November 11, 2022 (version 2)

Copyright

© 2022, Cao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,684
    views
  • 273
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rui Cao
  2. John H Bladon
  3. Stephen J Charczynski
  4. Michael E Hasselmo
  5. Marc W Howard
(2022)
Internally generated time in the rodent hippocampus is logarithmically compressed
eLife 11:e75353.
https://doi.org/10.7554/eLife.75353

Share this article

https://doi.org/10.7554/eLife.75353

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.

    1. Neuroscience
    Kenta Abe, Yuki Kambe ... Tatsuo Sato
    Research Article

    Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.