Development of frequency tuning shaped by spatial cue reliability in the barn owl's auditory midbrain

  1. Keanu Shadron  Is a corresponding author
  2. José Luis Peña
  1. Albert Einstein College of Medicine, United States

Abstract

Sensory systems preferentially strengthen responses to stimuli based on their reliability at conveying accurate information. While previous reports demonstrate that the brain reweighs cues based on dynamic changes in reliability, how the brain may learn and maintain neural responses to sensory statistics expected to be stable over time is unknown. The barn owl's midbrain features a map of auditory space where neurons compute horizontal sound location from the interaural time difference (ITD). Frequency tuning of midbrain map neurons correlates with the most reliable frequencies for the neurons' preferred ITD. Removal of the facial ruff led to a specific decrease in the reliability of high frequencies from frontal space. To directly test if permanent changes in ITD reliability drive frequency tuning, midbrain map neurons were recorded from adult owls, with the facial ruff removed during development, and juvenile owls, before facial ruff development. In both groups, frontally-tuned neurons were tuned to frequencies lower than in normal adult owls, consistent with the change in ITD reliability. In addition, juvenile owls exhibited more heterogeneous frequency tuning, suggesting normal developmental processes refine tuning to match ITD reliability. These results indicate causality of long-term statistics of spatial cues in the development of midbrain frequency tuning properties, implementing probabilistic coding for sound localization.

Data availability

All data and original code used in this paper is publicly available at https://doi.org/10.12751/g-node.p52i4s.Shadron K, Peña JL (2022) Shadron_Pena_2022. G-Node. https://gin.g-node.org/penalab/Shadron_Pena_2022.

Article and author information

Author details

  1. Keanu Shadron

    Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
    For correspondence
    keanu.shadron@einsteinmed.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5217-9282
  2. José Luis Peña

    Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institute on Deafness and Other Communication Disorders (F31DC019303)

  • Keanu Shadron

National Institute on Deafness and Other Communication Disorders (R01DC007690)

  • José Luis Peña

National Institute of Neurological Disorders and Stroke (R01NS104911)

  • José Luis Peña

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Ethics

Animal experimentation: All procedures complied with the National Institute of Health guidelines and were approved by the institutional animal care and use committee of the Albert Einstein College of Medicine (00001189). All surgeries were performed under ketamine/xylazine to minimize suffering. The trimming of facial ruff feathers were painless and did not require anesthetics. No experiments were terminal.

Version history

  1. Preprint posted: September 29, 2022 (view preprint)
  2. Received: November 8, 2022
  3. Accepted: May 10, 2023
  4. Accepted Manuscript published: May 11, 2023 (version 1)
  5. Version of Record published: June 2, 2023 (version 2)

Copyright

© 2023, Shadron & Peña

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 424
    views
  • 63
    downloads
  • 2
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Keanu Shadron
  2. José Luis Peña
(2023)
Development of frequency tuning shaped by spatial cue reliability in the barn owl's auditory midbrain
eLife 12:e84760.
https://doi.org/10.7554/eLife.84760

Share this article

https://doi.org/10.7554/eLife.84760

Further reading

    1. Neuroscience
    Salima Messaoudi, Ada Allam ... Isabelle Caille
    Research Article

    The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.