Theta- and gamma-band oscillatory uncoupling in the macaque hippocampus

  1. Saman Abbaspoor
  2. Ahmed T Hussin
  3. Kari L Hoffman  Is a corresponding author
  1. Vanderbilt University, United States
  2. York University, Canada

Abstract

Nested hippocampal oscillations in the rodent give rise to temporal dynamics that may underlie learning, memory, and decision making. Although theta/gamma coupling in rodent CA1 occurs during exploration and sharp-wave ripples emerge in quiescence, it is less clear that these oscillatory regimes extend to primates. We therefore sought to identify correspondences in frequency bands, nesting, and behavioral coupling of oscillations taken from macaque hippocampus. We found that, in contrast to rodent oscillations, theta and gamma frequency bands in macaque CA1 were segregated by behavioral states. In both stationary and freely-moving designs, beta2/gamma (15-70 Hz) had greater power during visual search whereas the theta band (3-10 Hz; peak ~8 Hz) dominated during quiescence and early sleep. Moreover, theta band amplitude was strongest when beta2/slow gamma (20-35 Hz) amplitude was weakest, instead occurring along with higher frequencies (60-150 Hz). Spike-field coherence was most frequently seen in these three bands, (3-10 Hz, 20-35 Hz and 60-150 Hz); however, the theta-band coherence was largely due to spurious coupling during sharp-wave ripples. Accordingly, no intrinsic theta spiking rhythmicity was apparent. These results support a role for beta2/slow gamma modulation in CA1 during active exploration in the primate that is decoupled from theta oscillations. The apparent difference to the rodent oscillatory canon calls for a shift in focus of frequency when considering the primate hippocampus.

Data availability

The code used to process these data are available at https://github.com/hoffman-lab/Manuscripts/tree/main/AbbaspoorHussinHoffman2023. Data structures can be downloaded at https://zenodo.org/record/7757458. Previous reports from the stationary data are Leonard et al., 2015, Leonard et al., 2017, and Hussin et al., 2020.

The following data sets were generated

Article and author information

Author details

  1. Saman Abbaspoor

    Department of Psychology, Vanderbilt University, Nashville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ahmed T Hussin

    Department of Biology, York University, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Kari L Hoffman

    Department of Psychology, Vanderbilt University, Nashville, United States
    For correspondence
    kari.hoffman@vanderbilt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0560-8157

Funding

National Institutes of Neurological Disorders and Stroke (R01NS127128)

  • Saman Abbaspoor
  • Kari L Hoffman

Whitehall Foundation

  • Kari L Hoffman

Alzheimer's Society of Canada Doctoral Award

  • Ahmed T Hussin

National Science and Engineering Research Council (Discovery Grant)

  • Ahmed T Hussin
  • Kari L Hoffman

NSERC CREATE Vision Science and Applications

  • Ahmed T Hussin
  • Kari L Hoffman

Brain Canada Multi-Investigator Research Initiative

  • Ahmed T Hussin
  • Kari L Hoffman

The Krembil Foundation

  • Ahmed T Hussin
  • Kari L Hoffman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the procedures were in accordance with a protocol approved by the local governing authorities. In the US this was the institutional animal care and use committee (IACUC # M1700152), and in Canada, this was the Canadian Council on Animal Care, local Animal Care Committee at York University (#2014-9).

Version history

  1. Preprint posted: January 1, 2022 (view preprint)
  2. Received: January 31, 2023
  3. Accepted: March 13, 2023
  4. Accepted Manuscript published: May 4, 2023 (version 1)
  5. Version of Record published: May 24, 2023 (version 2)

Copyright

© 2023, Abbaspoor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,354
    views
  • 254
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Saman Abbaspoor
  2. Ahmed T Hussin
  3. Kari L Hoffman
(2023)
Theta- and gamma-band oscillatory uncoupling in the macaque hippocampus
eLife 12:e86548.
https://doi.org/10.7554/eLife.86548

Share this article

https://doi.org/10.7554/eLife.86548

Further reading

    1. Neuroscience
    Geoffroy Delamare, Yosif Zaki ... Claudia Clopath
    Short Report

    Representational drift refers to the dynamic nature of neural representations in the brain despite the behavior being seemingly stable. Although drift has been observed in many different brain regions, the mechanisms underlying it are not known. Since intrinsic neural excitability is suggested to play a key role in regulating memory allocation, fluctuations of excitability could bias the reactivation of previously stored memory ensembles and therefore act as a motor for drift. Here, we propose a rate-based plastic recurrent neural network with slow fluctuations of intrinsic excitability. We first show that subsequent reactivations of a neural ensemble can lead to drift of this ensemble. The model predicts that drift is induced by co-activation of previously active neurons along with neurons with high excitability which leads to remodeling of the recurrent weights. Consistent with previous experimental works, the drifting ensemble is informative about its temporal history. Crucially, we show that the gradual nature of the drift is necessary for decoding temporal information from the activity of the ensemble. Finally, we show that the memory is preserved and can be decoded by an output neuron having plastic synapses with the main region.

    1. Cell Biology
    2. Neuroscience
    Alexandra Stavsky, Leonardo A Parra-Rivas ... Daniel Gitler
    Short Report

    The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.