Antibiotics: A new spanner in the works of bacterial transcription
Bacterial infections cause over 17 million deaths globally every year (Butler and Buss, 2006; World Health Organisation, 2014). In the past 70 years, antibiotics have been critical in the fight against infectious disease, yet alarmingly, pathogenic bacteria of all categories have developed antibiotic resistance. This is rated one of the greatest threats to human health.
Alongside the rise of antibiotic resistant variants of already existing diseases, such as MDR-TB (multi-drug resistant tuberculosis) and MRSA (methicillin-resistant Staphylococcus aureus), new infectious diseases are emerging every year. However, few new antibiotics have been developed over the past two decades (Chief Medical Officer’s report, 2011). The situation is further complicated by the fact that many current antibiotics have severe side effects, particularly if they are used for a long time. There is, therefore, an urgent need for novel drugs. Now, in eLife, Richard Ebright and colleagues from Rutgers University, the Helmholtz Centre for Infection Research, and Naicons Srl—including Yu Zhang, David Degen, and Mary Ho as joint first authors—use a combination of genetic, biochemical and structural approaches to characterise how a recently discovered compound, with very promising properties, works (Zhang et al., 2014).
Designing drugs in a rational, systematic way requires an intimate knowledge of how they interact with their target and the mechanism by which they inhibit this target’s activity. Antibiotics act by interfering with processes that are essential to cells, such as transcription (Darst, 2004), translation or cell wall synthesis. In effect, these drugs ‘throw a spanner in the works’ of the bacterial cell. One set of prime targets for antibiotics are enzymes called multisubunit RNA polymerases (RNAPs), which transcribe the cellular genomes of all life on Earth (Werner and Grohmann, 2011).
The natural genetic mutations that constantly occur in all organisms mean that although a new antibiotic may initially successfully kill bacteria, it may not remain effective for long. Mutations that stop antibiotics inhibiting bacterial RNAP emerge randomly regardless of the environment the bacteria grow in. In most cases these changes will also make the bacterium less fit. Therefore, if the bacteria are not exposed to antibiotics, the number of resistant bacteria remains low compared to the number that are sensitive to the antibiotic (Comas et al., 2012). However, if antibiotics are then targeted at these bacteria, the selective pressure of the drug treatment may increase the proportion of drug-resistant mutants in the overall population, and thus a drug resistant strain of bacteria will emerge over time. In addition, the initial loss of fitness associated with the drug-resistant mutations is often compensated for by additional mutations, and so a new and more dangerous pathogen can evolve (Comas et al., 2012).
The ideal molecular target of an antibiotic—its binding site—would present little opportunity for drug resistance to evolve. Therefore, the target should be small, and directly involved in how RNAP works as an enzyme, to reduce the likelihood of a drug resistant RNAP evolving that remains catalytically active.
The bacterium Actinomadura sp., which was originally isolated from a soil sample, produces an antimicrobial chemical called GE23077, henceforth referred to as GE (Ciciliato et al., 2004). GE is Actinomadura’s weapon in the fight for resources in its natural environment, and is used against fungi as well as Gram-negative and Gram-positive bacteria. Early studies demonstrated that GE was a potent inhibitor of RNAP purified from Escherichia coli. However, the compound was less effective against living cells as it is unable to cross the cellular envelope that surrounds a bacterium (Sarubbi et al., 2004). Improving GE’s properties, for example by increasing its uptake into a cell while not lowering its potency, requires the molecular basis of its activity to be thoroughly understood (Mariani et al., 2005).
RNAPs transcribe DNA by building long chains of RNA from individual nucleotides. GE, like another antibiotic called rifampin (Rif) that is used to treat tuberculosis, does not interfere with the first steps of transcription initiation. Therefore, RNAP can still find the correct start site and load the template DNA strand into its active site ready for RNA synthesis. GE inhibits the subsequent step, preventing the joining together of the first two nucleotide substrates in the RNA chain.
The X-ray crystal structures of bacterial RNAP in complex with GE solved by Ebright and colleagues provide a structural explanation for this activity (Figure 1). GE binding to RNAP interferes with the binding of the first and second RNA nucleotide substrates to the enzyme. Rif works in a similar way: as this antibiotic’s binding site is close to, but offset from GE’s, Rif allows the formation of di-and tri-nucleotides but prevents the synthesis of longer RNA chains. GE also interferes with the binding of a magnesium ion in the RNAP active site that is critical for enzyme catalysis.
To assess the number of mutations at the binding site that confer GE resistance and thereby pose a threat to effective antibiotic treatment, Ebright and colleagues used a technique called saturation mutagenesis. This generates all the possible mutations at a specific site, in this case within 30 Å of the catalytic centre of E. coli RNAP. The analysis revealed a very small target-based resistance spectrum, as only a very few mutations could produce RNAPs that are both resistant to GE and still catalytically active. The GE target site is also roughly 10-fold smaller than that of Rif and is therefore superior as it presents fewer possible sites of mutation.
Since the GE and Rif binding sites are next to but distinct from each other, the two drugs do not display cross-resistance. Therefore, Rif resistant RNAPs are not resistant to GE, and vice versa. Moreover, GE and Rif can bind simultaneously to RNAPs. As the ‘icing on the cake’ of their work, Ebright and colleagues joined together GE and Rif to generate a novel two-part (bipartite) compound, Rifa-GE. While Rifa-GE is as potent as GE or Rif, it also effectively inhibits RNAP variants that are resistant to either.
Once GE-containing compounds have been modified so they are better able to enter a living bacterial cell, they are likely to become front-line drugs in the struggle against bacterial infections.
References
-
Natural products—the future scaffolds for novel antibiotics?Biochemical Pharmacology 7:919–929.https://doi.org/10.1016/j.bcp.2005.10.012
-
New inhibitors targeting bacterial RNA polymeraseTrends in Biochemical Sciences 29:159–160.https://doi.org/10.1016/j.tibs.2004.02.005
-
Antibiotics GE23077, novel inhibitors of bacterial RNA polymerase. Part 3: chemical derivatizationBioorganic & Medicinal Chemistry Letters 15:3748–3752.https://doi.org/10.1016/j.bmcl.2005.05.060
-
Mode of action of the microbial metabolite GE23077, a novel potent and selective inhibitor of bacterial RNA polymeraseEuropean Journal of Biochemistry/FEBS 271:3146–3154.https://doi.org/10.1111/j.1432-1033.2004.04244.x
-
Evolution of multisubunit RNA polymerases in the three domains of lifeNature Reviews Microbiology 9:85–98.https://doi.org/10.1038/nrmicro2507
Article and author information
Author details
Publication history
Copyright
© 2014, Arnvig and Werner
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,560
- views
-
- 65
- downloads
-
- 0
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
The Parkinson’s disease (PD)-linked protein Leucine-Rich Repeat Kinase 2 (LRRK2) consists of seven domains, including a kinase and a Roc G domain. Despite the availability of several high-resolution structures, the dynamic regulation of its unique intramolecular domain stack is nevertheless still not well understood. By in-depth biochemical analysis, assessing the Michaelis–Menten kinetics of the Roc G domain, we have confirmed that LRRK2 has, similar to other Roco protein family members, a KM value of LRRK2 that lies within the range of the physiological GTP concentrations within the cell. Furthermore, the R1441G PD variant located within a mutational hotspot in the Roc domain showed an increased catalytic efficiency. In contrast, the most common PD variant G2019S, located in the kinase domain, showed an increased KM and reduced catalytic efficiency, suggesting a negative feedback mechanism from the kinase domain to the G domain. Autophosphorylation of the G1+2 residue (T1343) in the Roc P-loop motif is critical for this phosphoregulation of both the KM and the kcat values of the Roc-catalyzed GTP hydrolysis, most likely by changing the monomer–dimer equilibrium. The LRRK2 T1343A variant has a similar increased kinase activity in cells compared to G2019S and the double mutant T1343A/G2019S has no further increased activity, suggesting that T1343 is crucial for the negative feedback in the LRRK2 signaling cascade. Together, our data reveal a novel intramolecular feedback regulation of the LRRK2 Roc G domain by a LRRK2 kinase-dependent mechanism. Interestingly, PD mutants differently change the kinetics of the GTPase cycle, which might in part explain the difference in penetrance of these mutations in PD patients.
-
- Biochemistry and Chemical Biology
- Structural Biology and Molecular Biophysics
Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.