A robust transcriptional program in newts undergoing multiple events of lens regeneration throughout their lifespan

  1. Konstantinos Sousounis
  2. Feng Qi
  3. Manisha C Yadav
  4. José L Millán
  5. Fubito Toyama
  6. Chikafumi Chiba
  7. Yukiko Eguchi
  8. Goro Eguchi
  9. Panagiotis A Tsonis  Is a corresponding author
  1. University of Dayton, United States
  2. Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, United States
  3. Sanford-Burnham-Prebys Medical Discovery Institute, United States
  4. Utsunomiya University, Japan
  5. Tsukuba University, Japan
  6. National Institutes for Natural Sciences, Japan

Abstract

Newts have the ability to repeatedly regenerate their lens even during ageing. However, it is unclear whether this regeneration reflects an undisturbed genetic activity. To answer this question, we compared the transcriptomes of lenses, irises and tails from aged newts that had undergone 19-times lens regeneration with the equivalent tissues from young newts that had never experienced lens regeneration. Our analysis indicates that repeatedly regenerated lenses showed a robust transcriptional program comparable to young never-regenerated lenses. In contrast, the tail, that was never regenerated, showed gene expression signatures of ageing. Our analysis strongly suggests that, with respect to gene expression, the regenerated lenses have not deviated from a robust transcriptional program even after multiple events of regeneration throughout the life of the newt. In addition, our study provides a new paradigm in biology, and establishes the newt as a key model for the study of regeneration in relation to ageing.

Article and author information

Author details

  1. Konstantinos Sousounis

    Department of Biology, University of Dayton, Dayton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Feng Qi

    Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, Orlando, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Manisha C Yadav

    Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. José L Millán

    Sanford Children's Health Research Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Fubito Toyama

    Graduate School of Engineering, Utsunomiya University, Utsunomiya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Chikafumi Chiba

    Faculty of Life and Environmental Sciences, Tsukuba University, Tsukuba, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Yukiko Eguchi

    National Institute for Basic Biology, National Institutes for Natural Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Goro Eguchi

    National Institute for Basic Biology, National Institutes for Natural Sciences, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Panagiotis A Tsonis

    Department of Biology, University of Dayton, Dayton, United States
    For correspondence
    ptsonis1@udayton.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: Usage of animals complied with the University of Dayton institutional regulations, IACUC protocol ID 011-02. All surgical procedures were performed under anesthesia with 0.1% ethyl 3-aminobenzoate.

Copyright

© 2015, Sousounis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,488
    views
  • 374
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Konstantinos Sousounis
  2. Feng Qi
  3. Manisha C Yadav
  4. José L Millán
  5. Fubito Toyama
  6. Chikafumi Chiba
  7. Yukiko Eguchi
  8. Goro Eguchi
  9. Panagiotis A Tsonis
(2015)
A robust transcriptional program in newts undergoing multiple events of lens regeneration throughout their lifespan
eLife 4:e09594.
https://doi.org/10.7554/eLife.09594

Share this article

https://doi.org/10.7554/eLife.09594

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Stem Cells and Regenerative Medicine
    Mami Matsuo-Takasaki, Sho Kambayashi ... Yohei Hayashi
    Tools and Resources

    Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.