An oxygen-insensitive Hif-3α isoform inhibits Wnt signaling by destabilizing the nuclear β-catenin complex

  1. Peng Zhang
  2. Yan Bai
  3. Ling Lu
  4. Yun Li
  5. Cunming Duan  Is a corresponding author
  1. University of Michigan, United States
  2. Ocean University of China, China

Abstract

Hypoxia-inducible factors (HIFs), while best known for their roles in the hypoxic response, have oxygen-independent roles in early development with poorly defined mechanisms. Here we report a novel Hif-3α variant, Hif-3α2, in zebrafish. Hif-3α2 lacks the bHLH, PAS, PAC, and ODD domains and is expressed in embryonic and adult tissues independently of oxygen availability. Hif-3α2 is a nuclear protein with significant hypoxia response element (HRE)-dependent transcriptional activity. Hif-3α2 overexpression not only decreases embryonic growth and developmental timing but also causes left-right asymmetry defects. Genetic deletion of Hif-3α2 by CRISPR/Cas9 genome editing increases, while Hif-3α2 overexpression decreases, Wnt/β-catenin signaling. This action is independent of its HRE-dependent transcriptional activity. Mechanistically, Hif-3α2 binds to β-catenin and destabilizes the nuclear β-catenin complex. This mechanism is distinct from GSK3β-mediated β-catenin degradation and is conserved in humans. These findings provide new insights into the oxygen-independent actions of HIFs and uncover a novel mechanism regulating Wnt/β-catenin signaling.

Article and author information

Author details

  1. Peng Zhang

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yan Bai

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ling Lu

    Key Laboratory of Marine Drugs, Ministry of Education and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yun Li

    Key Laboratory of Marine Drugs, Ministry of Education and School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Cunming Duan

    Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
    For correspondence
    cduan@umich.edu
    Competing interests
    The authors declare that no competing interests exist.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#09707) of the University of Michigan. Every effort was made to minimize suffering.

Copyright

© 2016, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,994
    views
  • 587
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Peng Zhang
  2. Yan Bai
  3. Ling Lu
  4. Yun Li
  5. Cunming Duan
(2016)
An oxygen-insensitive Hif-3α isoform inhibits Wnt signaling by destabilizing the nuclear β-catenin complex
eLife 5:e08996.
https://doi.org/10.7554/eLife.08996

Share this article

https://doi.org/10.7554/eLife.08996

Further reading

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.