A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division

  1. Yubing Li
  2. Dianyi Liu
  3. Cristina López-Paz
  4. Bradley JSC Olson
  5. James G Umen  Is a corresponding author
  1. University of Florida, United States
  2. Donald Danforth Plant Science Center, United States
  3. Kansas State University, United States

Abstract

Proliferating cells actively control their size by mechanisms that are poorly understood. The unicellular green alga Chlamydomonas reinhardtii divides by multiple fission, wherein a 'counting' mechanism couples mother cell-size to cell division number allowing production of uniform-sized daughters. We identified a sizer protein, CDKG1, that acts through the retinoblastoma (RB) tumor suppressor pathway as a D-cyclin-dependent RB kinase to regulate mitotic counting. Loss of CDKG1 leads to fewer mitotic divisions and large daughters, while mis-expression of CDKG1 causes supernumerous mitotic divisions and small daughters. The concentration of nuclear-localized CDKG1 in pre-mitotic cells is set by mother cell size, and its progressive dilution and degradation with each round of cell division may provide a link between mother cell-size and mitotic division number. Cell-size-dependent accumulation of limiting cell cycle regulators such as CDKG1 is a potentially general mechanism for size control.

Article and author information

Author details

  1. Yubing Li

    Plant Molecular and Cell Biology Program, the Horticultural and Plant Science Department, University of Florida, Gainesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Dianyi Liu

    Donald Danforth Plant Science Center, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cristina López-Paz

    Donald Danforth Plant Science Center, St. Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Bradley JSC Olson

    Department of Molecular, Cellular and Developmental Biology Program, and the Ecological Genomics Institute, The Division of Biology, Kansas State University, Manhattan, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James G Umen

    Donald Danforth Plant Science Center, St. Louis, United States
    For correspondence
    jumen@danforthcenter.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Dominique C Bergmann, Stanford University/HHMI, United States

Version history

  1. Received: August 11, 2015
  2. Accepted: March 24, 2016
  3. Accepted Manuscript published: March 25, 2016 (version 1)
  4. Version of Record published: April 21, 2016 (version 2)

Copyright

© 2016, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,230
    views
  • 814
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yubing Li
  2. Dianyi Liu
  3. Cristina López-Paz
  4. Bradley JSC Olson
  5. James G Umen
(2016)
A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division
eLife 5:e10767.
https://doi.org/10.7554/eLife.10767

Share this article

https://doi.org/10.7554/eLife.10767

Further reading

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.

    1. Cell Biology
    Simona Bolamperti, Hiroaki Saito ... Hanna Taipaleenmäki
    Research Article

    Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (Pak3), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased Pak3 expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1–34 (PTH 1–34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.