Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion

  1. Benedetta Ubezio
  2. Raquel Agudo Blanco
  3. Ilse Geudens
  4. Fabio Stanchi
  5. Thomas Mathivet
  6. Martin L Jones
  7. Anan Ragab
  8. Katie Bentley
  9. Holger Gerhardt  Is a corresponding author
  1. London Research Institute, United Kingdom
  2. Vesalius Research Center, VIB, Belgium
  3. Harvard Medical School, United States

Abstract

Formation of a regularly branched blood vessel network is crucial in development and physiology. Here we show that the expression of the Notch ligand Dll4 fluctuates in individual endothelial cells within sprouting vessels in the mouse retina in vivo and in correlation with dynamic cell movement in mouse embryonic stem cell-derived sprouting assays. We also find that sprout elongation and branching associates with a highly differential phase pattern of Dll4 between endothelial cells. Stimulation with pathologically high levels of Vegf, or overexpression of Dll4, leads to Notch dependent synchronization of Dll4 fluctuations within clusters, both in vitro and in vivo. Our results demonstrate that the Vegf-Dll4/Notch feedback system normally operates to generate heterogeneity between endothelial cells driving branching, whilst synchronization drives vessel expansion. We propose that this sensitive phase transition in the behaviour of the Vegf-Dll4/Notch feedback loop underlies the morphogen function of Vegfa in vascular patterning.

Article and author information

Author details

  1. Benedetta Ubezio

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Raquel Agudo Blanco

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Ilse Geudens

    Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabio Stanchi

    Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas Mathivet

    Vascular Patterning Laboratory, Vesalius Research Center, VIB, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin L Jones

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Anan Ragab

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Katie Bentley

    Computational Biology Laboratory, Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Holger Gerhardt

    Vascular Biology Laboratory, London Research Institute, London, United Kingdom
    For correspondence
    holger.gerhardt@mdc-berlin.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Ethics

Animal experimentation: Mice were maintained at London Research Institute under standard husbandry conditions. All protocols were approved by the UK Home Office (P80/2391). Glioblastoma studies were performed at the Vesalius Research Center, VIB, KU Leuven where housing and all experimental animal procedures were performed in accordance with Belgian law on animal care and were approved by the Institutional Animal Care and Research Advisory Committee of the K. U. Leuven (P105/2012).

Version history

  1. Received: October 7, 2015
  2. Accepted: April 11, 2016
  3. Accepted Manuscript published: April 13, 2016 (version 1)
  4. Version of Record published: June 6, 2016 (version 2)
  5. Version of Record updated: May 9, 2017 (version 3)

Copyright

© 2016, Ubezio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,798
    views
  • 1,290
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benedetta Ubezio
  2. Raquel Agudo Blanco
  3. Ilse Geudens
  4. Fabio Stanchi
  5. Thomas Mathivet
  6. Martin L Jones
  7. Anan Ragab
  8. Katie Bentley
  9. Holger Gerhardt
(2016)
Synchronization of endothelial Dll4-Notch dynamics switch blood vessels from branching to expansion
eLife 5:e12167.
https://doi.org/10.7554/eLife.12167

Share this article

https://doi.org/10.7554/eLife.12167

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Trine Line Hauge Okholm, Andreas Bjerregaard Kamstrup ... Christian Kroun Damgaard
    Research Article

    Circular RNAs represent a class of endogenous RNAs that regulate gene expression and influence cell biological decisions with implications for the pathogenesis of several diseases. Here, we disclose a novel gene-regulatory role of circHIPK3 by combining analyses of large genomics datasets and mechanistic cell biological follow-up experiments. Using time-course depletion of circHIPK3 and specific candidate RNA-binding proteins, we identify several perturbed genes by RNA sequencing analyses. Expression-coupled motif analyses identify an 11-mer motif within circHIPK3, which also becomes enriched in genes that are downregulated upon circHIPK3 depletion. By mining eCLIP datasets and combined with RNA immunoprecipitation assays, we demonstrate that the 11-mer motif constitutes a strong binding site for IGF2BP2 in bladder cancer cell lines. Our results suggest that circHIPK3 can sequester IGF2BP2 as a competing endogenous RNA (ceRNA), leading to target mRNA stabilization. As an example of a circHIPK3-regulated gene, we focus on the STAT3 mRNA as a specific substrate of IGF2BP2 and validate that manipulation of circHIPK3 regulates IGF2BP2-STAT3 mRNA binding and, thereby, STAT3 mRNA levels. Surprisingly, absolute copy number quantifications demonstrate that IGF2BP2 outnumbers circHIPK3 by orders of magnitude, which is inconsistent with a simple 1:1 ceRNA hypothesis. Instead, we show that circHIPK3 can nucleate multiple copies of IGF2BP2, potentially via phase separation, to produce IGF2BP2 condensates. Our results support a model where a few cellular circHIPK3 molecules can induce IGF2BP2 condensation, thereby regulating key factors for cell proliferation.

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.