TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells

  1. Barbora Malecova
  2. Alessandra Dall'Agnese
  3. Luca Madaro
  4. Sole Gatto
  5. Paula Coutinho Toto
  6. Sonia Albini
  7. Tammy Ryan
  8. Làszlò Tora
  9. Pier Lorenzo Puri  Is a corresponding author
  1. Sanford Burnham Prebys Medical Discovery Institute, United States
  2. Fondazione Santa Lucia - Istituto di Ricovero e Cura a Carattere Scientifico, Italy
  3. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France

Abstract

Change in the identity of the components of the transcription pre-initiation complex is proposed to control cell type-specific gene expression. Replacement of the canonical TFIID-TBP complex with TRF3/TBP2 was reported to be required for activation of muscle-gene expression. The lack of a developmental phenotype in TBP2 null mice prompted further analysis to determine whether TBP2 deficiency can compromise adult myogenesis. We show here that TBP2 null mice have an intact regeneration potential upon injury and that TBP2 is not expressed in established C2C12 muscle cell or in primary mouse MuSCs. While TFIID subunits and TBP are downregulated during myoblast differentiation, reduced amounts of these proteins form a complex that is detectable on promoters of muscle genes and is essential for their expression. This evidence demonstrates that TBP2 does not replace TBP during muscle differentiation, as previously proposed, with limiting amounts of TFIID-TBP being required to promote muscle-specific gene expression.

Article and author information

Author details

  1. Barbora Malecova

    Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alessandra Dall'Agnese

    Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Luca Madaro

    Fondazione Santa Lucia - Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Sole Gatto

    Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Paula Coutinho Toto

    Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sonia Albini

    Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tammy Ryan

    Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Làszlò Tora

    Cellular signaling and nuclear dynamics program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CU de Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Pier Lorenzo Puri

    Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    For correspondence
    lpuri@sbpdiscovery.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Alan G Hinnebusch, National Institute of Child Health and Human Development, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#13-007) of the Sanford Burnham Prebys Medical Discovery Institute. Every effort was made to minimize suffering.

Version history

  1. Received: October 26, 2015
  2. Accepted: January 21, 2016
  3. Accepted Manuscript published: February 11, 2016 (version 1)
  4. Version of Record published: February 25, 2016 (version 2)

Copyright

© 2016, Malecova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,372
    views
  • 541
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Barbora Malecova
  2. Alessandra Dall'Agnese
  3. Luca Madaro
  4. Sole Gatto
  5. Paula Coutinho Toto
  6. Sonia Albini
  7. Tammy Ryan
  8. Làszlò Tora
  9. Pier Lorenzo Puri
(2016)
TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells
eLife 5:e12534.
https://doi.org/10.7554/eLife.12534

Share this article

https://doi.org/10.7554/eLife.12534

Further reading

    1. Cell Biology
    2. Neuroscience
    Mariana I Tsap, Andriy S Yatsenko ... Halyna R Shcherbata
    Research Article Updated

    Mutations in Drosophila Swiss cheese (SWS) gene or its vertebrate orthologue neuropathy target esterase (NTE) lead to progressive neuronal degeneration in flies and humans. Despite its enzymatic function as a phospholipase is well established, the molecular mechanism responsible for maintaining nervous system integrity remains unclear. In this study, we found that NTE/SWS is present in surface glia that forms the blood-brain barrier (BBB) and that NTE/SWS is important to maintain its structure and permeability. Importantly, BBB glia-specific expression of Drosophila NTE/SWS or human NTE in the sws mutant background fully rescues surface glial organization and partially restores BBB integrity, suggesting a conserved function of NTE/SWS. Interestingly, sws mutant glia showed abnormal organization of plasma membrane domains and tight junction rafts accompanied by the accumulation of lipid droplets, lysosomes, and multilamellar bodies. Since the observed cellular phenotypes closely resemble the characteristics described in a group of metabolic disorders known as lysosomal storage diseases (LSDs), our data established a novel connection between NTE/SWS and these conditions. We found that mutants with defective BBB exhibit elevated levels of fatty acids, which are precursors of eicosanoids and are involved in the inflammatory response. Also, as a consequence of a permeable BBB, several innate immunity factors are upregulated in an age-dependent manner, while BBB glia-specific expression of NTE/SWS normalizes inflammatory response. Treatment with anti-inflammatory agents prevents the abnormal architecture of the BBB, suggesting that inflammation contributes to the maintenance of a healthy brain barrier. Considering the link between a malfunctioning BBB and various neurodegenerative diseases, gaining a deeper understanding of the molecular mechanisms causing inflammation due to a defective BBB could help to promote the use of anti-inflammatory therapies for age-related neurodegeneration.

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.