Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level

  1. Daniel Coutandin
  2. Christian Osterburg
  3. Ratnesh Kumar Srivastav
  4. Manuela Sumyk
  5. Sebastian Kehrloesser
  6. Jakob Gebel
  7. Marcel Tuppi
  8. Jens Hannewald
  9. Birgit Schäfer
  10. Eidarus Salah
  11. Sebastian Mathea
  12. Uta Müller-Kuller
  13. James Doutch
  14. Manuel Grez
  15. Stefan Knapp
  16. Volker Dötsch  Is a corresponding author
  1. Goethe University, Germany
  2. Merck KGaA, Germany
  3. University of Oxford, United Kingdom
  4. Georg-Speyer Haus, Germany
  5. ISIS Neutron and Muon Source, United Kingdom
  6. Georg-Speyer-Haus, Germany

Abstract

Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long periods of time, during which the high concentration of the p53 family member TAp63α sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization and concomitant activation upon detection of DNA damage. Here we show that the TAp63α dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism not requiring further translation of other cellular factors in oocytes and is associated with unfolding of the inhibitory structure that blocks the tetramerization interface. Using a combination of biophysical methods as well as cell and ovary culture experiments we explain how TAp63α is kept inactive in the absence of DNA damage but causes rapid oocyte elimination in response to a few DNA double strand breaks thereby acting as the key quality control factor in maternal reproduction.

Article and author information

Author details

  1. Daniel Coutandin

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  2. Christian Osterburg

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  3. Ratnesh Kumar Srivastav

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  4. Manuela Sumyk

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  5. Sebastian Kehrloesser

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  6. Jakob Gebel

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  7. Marcel Tuppi

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  8. Jens Hannewald

    MS-DTB-C Protein Purification, Merck KGaA, Darmstadt, Germany
    Competing interests
    No competing interests declared.
  9. Birgit Schäfer

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  10. Eidarus Salah

    Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  11. Sebastian Mathea

    Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  12. Uta Müller-Kuller

    Georg-Speyer Haus, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  13. James Doutch

    Rutherford Appleton Laboratory, ISIS Neutron and Muon Source, Dodcot, United Kingdom
    Competing interests
    No competing interests declared.
  14. Manuel Grez

    Georg-Speyer-Haus, Frankfurt, Germany
    Competing interests
    No competing interests declared.
  15. Stefan Knapp

    Nuffield Department of Medicine, Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  16. Volker Dötsch

    Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance and Cluster of Excellence Macromolecular Complexes, Goethe University, Frankfurt, Germany
    For correspondence
    vdoetsch@em.uni-frankfurt.de
    Competing interests
    Volker Dötsch, Reviewing editor, eLife.

Reviewing Editor

  1. Joaquín M Espinosa, University of Colorado Denver School of Medicine, United States

Ethics

Animal experimentation: The work with mice was conducted according to the regulations of the Goethe University and the DFG (according to {section sign} 4 TierSchG) and supervised by the Tierschutzbeauftragte of Goethe University.

Version history

  1. Received: December 18, 2015
  2. Accepted: March 28, 2016
  3. Accepted Manuscript published: March 29, 2016 (version 1)
  4. Version of Record published: April 29, 2016 (version 2)

Copyright

© 2016, Coutandin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,273
    views
  • 469
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Coutandin
  2. Christian Osterburg
  3. Ratnesh Kumar Srivastav
  4. Manuela Sumyk
  5. Sebastian Kehrloesser
  6. Jakob Gebel
  7. Marcel Tuppi
  8. Jens Hannewald
  9. Birgit Schäfer
  10. Eidarus Salah
  11. Sebastian Mathea
  12. Uta Müller-Kuller
  13. James Doutch
  14. Manuel Grez
  15. Stefan Knapp
  16. Volker Dötsch
(2016)
Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level
eLife 5:e13909.
https://doi.org/10.7554/eLife.13909

Share this article

https://doi.org/10.7554/eLife.13909

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Alexander D Cook, Mark Carrington, Matthew K Higgins
    Research Article

    African trypanosomes replicate within infected mammals where they are exposed to the complement system. This system centres around complement C3, which is present in a soluble form in serum but becomes covalently deposited onto the surfaces of pathogens after proteolytic cleavage to C3b. Membrane-associated C3b triggers different complement-mediated effectors which promote pathogen clearance. To counter complement-mediated clearance, African trypanosomes have a cell surface receptor, ISG65, which binds to C3b and which decreases the rate of trypanosome clearance in an infection model. However, the mechanism by which ISG65 reduces C3b function has not been determined. We reveal through cryogenic electron microscopy that ISG65 has two distinct binding sites for C3b, only one of which is available in C3 and C3d. We show that ISG65 does not block the formation of C3b or the function of the C3 convertase which catalyses the surface deposition of C3b. However, we show that ISG65 forms a specific conjugate with C3b, perhaps acting as a decoy. ISG65 also occludes the binding sites for complement receptors 2 and 3, which may disrupt recruitment of immune cells, including B cells, phagocytes, and granulocytes. This suggests that ISG65 protects trypanosomes by combining multiple approaches to dampen the complement cascade.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.