Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors

  1. Christopher A Natale
  2. Elizabeth K Duperret
  3. Junqian Zhang
  4. Rochelle Sadeghi
  5. Ankit Dahal
  6. Kevin Tyler O'Brien
  7. Rosa Cookson
  8. Jeffrey D Winkler
  9. Todd W Ridky  Is a corresponding author
  1. Perelman School of Medicine, University of Pennsylvania, United States
  2. University of Pennsylvania, United States

Abstract

The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17β-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics.

Article and author information

Author details

  1. Christopher A Natale

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Christopher A Natale, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.
  2. Elizabeth K Duperret

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Junqian Zhang

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Rochelle Sadeghi

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  5. Ankit Dahal

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  6. Kevin Tyler O'Brien

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  7. Rosa Cookson

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  8. Jeffrey D Winkler

    Department of Chemistry, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Jeffrey D Winkler, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.
  9. Todd W Ridky

    Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    ridky@mail.med.upenn.edu
    Competing interests
    Todd W Ridky, Listed as an inventor on patent applications held by the University of Pennsylvania for the use of topical estrogen and progesterone derivatives for modulating skin pigmentation.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (#803381) of the University of Pennsylvania.

Copyright

© 2016, Natale et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,556
    views
  • 1,088
    downloads
  • 96
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christopher A Natale
  2. Elizabeth K Duperret
  3. Junqian Zhang
  4. Rochelle Sadeghi
  5. Ankit Dahal
  6. Kevin Tyler O'Brien
  7. Rosa Cookson
  8. Jeffrey D Winkler
  9. Todd W Ridky
(2016)
Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors
eLife 5:e15104.
https://doi.org/10.7554/eLife.15104

Share this article

https://doi.org/10.7554/eLife.15104

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Deb Sankar Banerjee, Shiladitya Banerjee
    Research Article

    Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here, we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.