Abstract

Ubiquitin is essential for eukaryotic life and varies in only 3 amino acid positions between yeast and humans. However, recent deep sequencing studies indicate that ubiquitin is highly tolerant to single mutations. We hypothesized that this tolerance would be reduced by chemically induced physiologic perturbations. To test this hypothesis, a class of first year UCSF graduate students employed deep mutational scanning to determine the fitness landscape of all possible single residue mutations in the presence of five different small molecule perturbations. These perturbations uncover 'shared sensitized positions' localized to areas around the hydrophobic patch and the C-terminus. In addition, we identified perturbation specific effects such as a sensitization of His68 in HU and a tolerance to mutation at Lys63 in DTT. Our data show how chemical stresses can reduce buffering effects in the ubiquitin proteasome system. Finally, this study demonstrates the potential of lab-based interdisciplinary graduate curriculum.

Article and author information

Author details

  1. David Mavor

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Kyle Barlow

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Samuel Thompson

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Benjamin A Barad

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alain R Bonny

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Clinton L Cario

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Garrett Gaskins

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Zairan Liu

    Biophysics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Laura Deming

    Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Seth D Axen

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Elena Caceres

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Weilin Chen

    Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Adolfo Cuesta

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Rachel Gate

    Bioinformatics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Evan M Green

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Kaitlin R Hulce

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Weiyue Ji

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Lillian R Kenner

    Biophysics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. Bruk Mensa

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Leanna S Morinishi

    Bioinformatics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Steven M Moss

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Marco Mravic

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  23. Ryan K Muir

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  24. Stefan Niekamp

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  25. Chimno I Nnadi

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  26. Eugene Palovcak

    Biophysics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  27. Erin M Poss

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  28. Tyler D Ross

    Biophysics Graduate Group, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  29. Eugenia C Salcedo

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  30. Stephanie See

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  31. Meena Subramaniam

    Bioinformatics Graduate Group, University of California, San Francisco, San Fransisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  32. Allison W Wong

    Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  33. Jennifer Li

    UCSF Science and Health Education Partnership, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  34. Kurt S Thorn

    UCSF Science and Health Education Partnership, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  35. Shane Thomas Ó Conchúir

    Department of Bioengineering and Therapeutic Science, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  36. Benjamin P Roscoe

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  37. Eric D Chow

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  38. Joseph L DeRisi

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  39. Tanja Kortemme

    Department of Bioengineering and Therapeutic Science, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  40. Daniel NA Bolon

    Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  41. James S Fraser

    Department of Bioengineering and Therapeutic Science, California Institute for Quantitative Biology, University of California, San Francisco, San Francisco, United States
    For correspondence
    jfraser@fraserlab.com
    Competing interests
    The authors declare that no competing interests exist.

Copyright

© 2016, Mavor et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,418
    views
  • 665
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Mavor
  2. Kyle Barlow
  3. Samuel Thompson
  4. Benjamin A Barad
  5. Alain R Bonny
  6. Clinton L Cario
  7. Garrett Gaskins
  8. Zairan Liu
  9. Laura Deming
  10. Seth D Axen
  11. Elena Caceres
  12. Weilin Chen
  13. Adolfo Cuesta
  14. Rachel Gate
  15. Evan M Green
  16. Kaitlin R Hulce
  17. Weiyue Ji
  18. Lillian R Kenner
  19. Bruk Mensa
  20. Leanna S Morinishi
  21. Steven M Moss
  22. Marco Mravic
  23. Ryan K Muir
  24. Stefan Niekamp
  25. Chimno I Nnadi
  26. Eugene Palovcak
  27. Erin M Poss
  28. Tyler D Ross
  29. Eugenia C Salcedo
  30. Stephanie See
  31. Meena Subramaniam
  32. Allison W Wong
  33. Jennifer Li
  34. Kurt S Thorn
  35. Shane Thomas Ó Conchúir
  36. Benjamin P Roscoe
  37. Eric D Chow
  38. Joseph L DeRisi
  39. Tanja Kortemme
  40. Daniel NA Bolon
  41. James S Fraser
(2016)
Determination of ubiquitin fitness landscapes under different chemical stresses in a classroom setting
eLife 5:e15802.
https://doi.org/10.7554/eLife.15802

Share this article

https://doi.org/10.7554/eLife.15802

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.