Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae

  1. Galina V Beznoussenko
  2. Seetharaman Parashuraman
  3. Riccardo Rizzo
  4. Roman Polishchuk
  5. Oliviano Martella
  6. Daniele Di Giandomenico
  7. Aurora Fusella
  8. Alexander Spaar
  9. Michele Sallese
  10. Maria Grazia Capestrano
  11. Margit Pavelka
  12. Matthijn R Vos
  13. Yuri GM Rikers
  14. Volkhard Helms
  15. Alexandre A Mironov
  16. Alberto Luini  Is a corresponding author
  1. Fondazione IFOM, Italy
  2. Consiglio Nazionale Delle Ricerche (CNR-IBP), Italy
  3. Telethon Institute for Genetics and Medicine (TIGEM), Italy
  4. Consorzio Mario Negri Sud, Italy
  5. Center for Anatomy and Cell Biology, Medical University of Vienna, Austria
  6. FEI Company, Netherlands
  7. Saarland University, Germany

Abstract

The mechanism of transport through the Golgi complex is not completely understood, insofar as no single transport mechanism appears to account for all of the observations. Here, we compare the transport of soluble secretory proteins (albumin and α1-antitrypsin) with that of supramolecular cargoes (e.g., procollagen) that are proposed to traverse the Golgi by compartment progression-maturation. We show that these soluble proteins traverse the Golgi much faster than procollagen while moving through the same stack. Moreover, we present kinetic and morphological observations that indicate that albumin transport occurs by diffusion via intercisternal continuities. These data provide evidence that this transport mechanism that applies to a major class of secretory proteins and indicate the co-existence of multiple intra-Golgi trafficking modes.

Article and author information

Author details

  1. Galina V Beznoussenko

    Fondazione IFOM, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Seetharaman Parashuraman

    Consiglio Nazionale Delle Ricerche (CNR-IBP), Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  3. Riccardo Rizzo

    Consiglio Nazionale Delle Ricerche (CNR-IBP), Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Roman Polishchuk

    Telethon Institute for Genetics and Medicine (TIGEM), Naples, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Oliviano Martella

    Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniele Di Giandomenico

    Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
    Competing interests
    The authors declare that no competing interests exist.
  7. Aurora Fusella

    Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Alexander Spaar

    Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Michele Sallese

    Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
    Competing interests
    The authors declare that no competing interests exist.
  10. Maria Grazia Capestrano

    Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
    Competing interests
    The authors declare that no competing interests exist.
  11. Margit Pavelka

    Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthijn R Vos

    FEI Company, Eindhoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Yuri GM Rikers

    FEI Company, Eindhoven, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  14. Volkhard Helms

    Saarland University, Saarbruecken, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Alexandre A Mironov

    Fondazione IFOM, Milan, Italy
    Competing interests
    The authors declare that no competing interests exist.
  16. Alberto Luini

    Consiglio Nazionale Delle Ricerche (CNR-IBP), Naples, Italy
    For correspondence
    luini@tigem.it
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Suzanne R Pfeffer, Stanford University, United States

Version history

  1. Received: December 4, 2013
  2. Accepted: May 25, 2014
  3. Accepted Manuscript published: May 27, 2014 (version 1)
  4. Version of Record published: June 25, 2014 (version 2)

Copyright

© 2014, Beznoussenko et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,776
    views
  • 535
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Galina V Beznoussenko
  2. Seetharaman Parashuraman
  3. Riccardo Rizzo
  4. Roman Polishchuk
  5. Oliviano Martella
  6. Daniele Di Giandomenico
  7. Aurora Fusella
  8. Alexander Spaar
  9. Michele Sallese
  10. Maria Grazia Capestrano
  11. Margit Pavelka
  12. Matthijn R Vos
  13. Yuri GM Rikers
  14. Volkhard Helms
  15. Alexandre A Mironov
  16. Alberto Luini
(2014)
Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae
eLife 3:e02009.
https://doi.org/10.7554/eLife.02009

Share this article

https://doi.org/10.7554/eLife.02009

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.