Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters

  1. Mei Rosa Ng
  2. Achim Besser
  3. Joan S Brugge
  4. Gaudenz Danuser  Is a corresponding author
  1. Harvard Medical School, United States
  2. University of Texas Southwestern Medical Center, United States

Abstract

Force transduction at cell-cell adhesions regulates tissue development, maintenance and adaptation. We developed computational and experimental approaches to quantify, with both subcellular and multi-cellular resolution, the dynamics of force transmission in cell clusters. Applying this technology to spontaneously-forming adherent epithelial cell clusters, we found that basal force fluctuations were coupled to E-cadherin localization at the level of individual cell-cell junctions. At the multi-cellular scale, cell-cell force exchange depended on the cell position within a cluster, and was adaptive to reconfigurations due to cell divisions or positional rearrangements. Importantly, force transmission through a cell required coordinated modulation of cell-matrix adhesion and actomyosin contractility in the cell and its neighbors. These data provide insights into mechanisms that could control mechanical stress homeostasis in dynamic epithelial tissues, and highlight our methods as a resource for the study of mechanotransduction in cell-cell adhesions.

Article and author information

Author details

  1. Mei Rosa Ng

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Achim Besser

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Joan S Brugge

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Gaudenz Danuser

    Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    gaudenz.danuser@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Ewa Paluch, University College London, United Kingdom

Version history

  1. Received: May 5, 2014
  2. Accepted: December 4, 2014
  3. Accepted Manuscript published: December 5, 2014 (version 1)
  4. Version of Record published: January 22, 2015 (version 2)

Copyright

© 2014, Ng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,007
    views
  • 993
    downloads
  • 95
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mei Rosa Ng
  2. Achim Besser
  3. Joan S Brugge
  4. Gaudenz Danuser
(2014)
Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters
eLife 3:e03282.
https://doi.org/10.7554/eLife.03282

Share this article

https://doi.org/10.7554/eLife.03282

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.