Female resistance to pneumonia identifies lung macrophage nitric oxide Synthase-3 as a therapeutic target

  1. Zhiping Yang
  2. Yuh-Chin T Huang
  3. Henry Koziel
  4. Rini de Crom
  5. Hartmut Ruetten
  6. Paulus Wohlfart
  7. Reimar W Thomsen
  8. Johnny Kahlert
  9. Henrik Toft Sørensen
  10. Szczepan Jozefowski
  11. Amy Colby
  12. Lester Kobzik  Is a corresponding author
  1. Harvard School of Public Health, United States
  2. US Environmental Protection Agency, United States
  3. Beth Israel Deaconness Medical Center, United States
  4. Erasmus University Medical Center, Netherlands
  5. Sanofi Research and Development, Germany
  6. Aarhus University Hospital, Denmark
  7. Jagiellonian University Medical College, Poland

Abstract

To identify new approaches to enhance innate immunity to bacterial pneumonia, we investigated the natural experiment of gender differences in resistance to infections. Female and estrogen-treated male mice show greater resistance to pneumococcal pneumonia, seen as greater bacterial clearance, diminished lung inflammation and better survival. In vitro, lung macrophages from female mice and humans show better killing of ingested bacteria. Inhibitors and genetically altered mice identify a critical role for estrogen-mediated activation of lung macrophage nitric oxide synthase-3 (NOS3). Epidemiologic data show decreased hospitalization for pneumonia in women receiving estrogen or statins (known to activate NOS3). Pharmacologic targeting of NOS3 with statins or another small-molecule compound (AVE3085) enhanced macrophage bacterial killing, improved bacterial clearance and increased host survival in both primary and secondary (post-influenza) pneumonia. The data identify a novel mechanism for host defense via NOS3 and suggest a potential therapeutic strategy to reduce secondary bacterial pneumonia after influenza.

Article and author information

Author details

  1. Zhiping Yang

    Harvard School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  2. Yuh-Chin T Huang

    US Environmental Protection Agency, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  3. Henry Koziel

    Beth Israel Deaconness Medical Center, Boston, United States
    Competing interests
    No competing interests declared.
  4. Rini de Crom

    Erasmus University Medical Center, Rotterdam, Netherlands
    Competing interests
    No competing interests declared.
  5. Hartmut Ruetten

    Sanofi Research and Development, Frankfurt, Germany
    Competing interests
    Hartmut Ruetten, Named as inventor on patents (US 7,179,839; 8,309,608, held by Sanofi, Inc.) describing AVE3085 as a useful compound for cardiovascular indications.
  6. Paulus Wohlfart

    Sanofi Research and Development, Frankfurt, Germany
    Competing interests
    Paulus Wohlfart, Named as inventor on patents (US 7,179,839; 8,309,608, held by Sanofi, Inc.) describing AVE3085 as a useful compound for cardiovascular indications.
  7. Reimar W Thomsen

    Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    No competing interests declared.
  8. Johnny Kahlert

    Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    No competing interests declared.
  9. Henrik Toft Sørensen

    Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    No competing interests declared.
  10. Szczepan Jozefowski

    Jagiellonian University Medical College, Kraków, Poland
    Competing interests
    No competing interests declared.
  11. Amy Colby

    Harvard School of Public Health, Boston, United States
    Competing interests
    No competing interests declared.
  12. Lester Kobzik

    Harvard School of Public Health, Boston, United States
    For correspondence
    lkobzik@hsph.harvard.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Nicholas J White, Mahidol University, Thailand

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (Harvard Medical Area IACUC) protocol (#03287).

Human subjects: We studied incidence of hospitalized pneumonia associated with use of estrogen and statins in a population-based case-control study based on medical databases in Denmark. Cases of pneumonia were identified as all women who received a first-time principal hospital diagnosis of pneumonia in the former North Jutland and Aarhus Counties, Northern Denmark (1.2 million inhabitants) between 1997 and 2012. Using the Danish Civil Registration System, each case subject was matched with five population control subjects with same age, female gender, and residence in Northern Denmark on the pneumonia index date. The study was approved by the Danish Data Protection Agency (record number: 2013-41-1924). Danish registry data are generally available for research purposes, and, according to Danish law, use of the data does not require informed consent.

Version history

  1. Received: June 17, 2014
  2. Accepted: October 12, 2014
  3. Accepted Manuscript published: October 15, 2014 (version 1)
  4. Version of Record published: November 3, 2014 (version 2)

Copyright

© 2014, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,875
    views
  • 217
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiping Yang
  2. Yuh-Chin T Huang
  3. Henry Koziel
  4. Rini de Crom
  5. Hartmut Ruetten
  6. Paulus Wohlfart
  7. Reimar W Thomsen
  8. Johnny Kahlert
  9. Henrik Toft Sørensen
  10. Szczepan Jozefowski
  11. Amy Colby
  12. Lester Kobzik
(2014)
Female resistance to pneumonia identifies lung macrophage nitric oxide Synthase-3 as a therapeutic target
eLife 3:e03711.
https://doi.org/10.7554/eLife.03711

Share this article

https://doi.org/10.7554/eLife.03711

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.