Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth

  1. Parthiv Haldipur
  2. Gwendolyn S Gillies
  3. Olivia K Janson
  4. Victor V Chizhikov
  5. Divakar S Mithal
  6. Richard J Miller
  7. Kathleen J Millen  Is a corresponding author
  1. Seattle Children's Research Institute, United States
  2. Seattle Chidren's Research Institute, United States
  3. University of Tennessee Health Sciences Center, United States
  4. Northwestern University, United States

Abstract

Loss of Foxc1 is associated with Dandy-Walker malformation, the most common human cerebellar malformation characterized by cerebellar hypoplasia and an enlarged posterior fossa and fourth ventricle. Although expressed in the mouse posterior fossa mesenchyme, loss of Foxc1 non-autonomously induces a rapid and devastating decrease in embryonic cerebellar ventricular zone radial glial proliferation and concurrent increase in cerebellar neuronal differentiation. Subsequent migration of cerebellar neurons is disrupted, associated with disordered radial glial morphology. In vitro, SDF1α, a direct Foxc1 target also expressed in the head mesenchyme, acts as a cerebellar radial glial mitogen and a chemoattractant for nascent Purkinje cells. Its receptor, Cxcr4, is expressed in cerebellar radial glial cells and conditional Cxcr4 ablation with Nes-Cre mimics the Foxc1-/- cerebellar phenotype. SDF1α also rescues the Foxc1-/- phenotype. Our data emphasizes that head mesenchyme exerts a considerable influence on early embryonic brain development and its disruption contributes to neurodevelopmental disorders in humans.

Article and author information

Author details

  1. Parthiv Haldipur

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Gwendolyn S Gillies

    Center for Integrative Brain Research, Seattle Chidren's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Olivia K Janson

    Center for Integrative Brain Research, Seattle Chidren's Research Institute, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Victor V Chizhikov

    Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Divakar S Mithal

    Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Richard J Miller

    Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kathleen J Millen

    Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, United States
    For correspondence
    kathleen.millen@seattlechildrens.org
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Robb Krumlauf, Stowers Institute for Medical Research, United States

Ethics

Animal experimentation: All animal experimentation done in this study was done in accordance with the guidelines laid down by the Institutional Animal Care and Use Committee (IACUC), of Seattle Children's Research Institute (protocol# 14208), Seattle, WA, USA.

Version history

  1. Received: July 10, 2014
  2. Accepted: December 16, 2014
  3. Accepted Manuscript published: December 16, 2014 (version 1)
  4. Version of Record published: January 2, 2015 (version 2)

Copyright

© 2014, Haldipur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,256
    views
  • 331
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Parthiv Haldipur
  2. Gwendolyn S Gillies
  3. Olivia K Janson
  4. Victor V Chizhikov
  5. Divakar S Mithal
  6. Richard J Miller
  7. Kathleen J Millen
(2014)
Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth
eLife 3:e03962.
https://doi.org/10.7554/eLife.03962

Share this article

https://doi.org/10.7554/eLife.03962

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.