A reversible non-membrane bound stress assembly that confers cell viability by preserving ERES components during amino-acid starvation

  1. Margarita Zacharogianni
  2. Angelica Aguilera Gomez
  3. Tineke Veenendaal
  4. Jan Smout
  5. Catherine Rabouille  Is a corresponding author
  1. Royal Netherlands Academy of Arts and Sciences, Netherlands
  2. University Medical Center Utrecht, Netherlands

Abstract

Nutritional restriction leads to protein translation attenuation that results in the storage and degradation of free mRNAs in cytoplasmic assemblies. Here, we show in Drosophila S2 cells that amino-acid starvation also leads to the inhibition of another major anabolic pathway, the protein transport through the secretory pathway, and to the formation of a novel reversible non-membrane bound stress assembly, the Sec body that incorporates components of the ER exit sites. Sec body formation does not depend on membrane traffic in the early secretory pathway, yet requires both Sec23 and Sec24AB. Sec bodies have liquid droplet-like properties and they act as a protective reservoir for ERES components to rebuild a functional secretory pathway after re-addition of amino-acids acting as a part of a survival mechanism. Taken together, we propose that the formation of these structures is a novel stress response mechanism to provide cell viability during and after nutrient stress.

Article and author information

Author details

  1. Margarita Zacharogianni

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Angelica Aguilera Gomez

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Tineke Veenendaal

    University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Jan Smout

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Catherine Rabouille

    Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
    For correspondence
    c.rabouille@hubrecht.eu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jodi Nunnari, University of California, Davis, United States

Version history

  1. Received: July 23, 2014
  2. Accepted: November 10, 2014
  3. Accepted Manuscript published: November 11, 2014 (version 1)
  4. Version of Record published: December 4, 2014 (version 2)
  5. Version of Record updated: November 11, 2016 (version 3)

Copyright

© 2014, Zacharogianni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,975
    views
  • 600
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Margarita Zacharogianni
  2. Angelica Aguilera Gomez
  3. Tineke Veenendaal
  4. Jan Smout
  5. Catherine Rabouille
(2014)
A reversible non-membrane bound stress assembly that confers cell viability by preserving ERES components during amino-acid starvation
eLife 3:e04132.
https://doi.org/10.7554/eLife.04132

Share this article

https://doi.org/10.7554/eLife.04132

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.