Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus

  1. Akira Takano
  2. Takuya Kajita
  3. Makoto Mochizuki
  4. Toshiya Endo
  5. Tohru Yoshihisa  Is a corresponding author
  1. Nagoya University, Japan
  2. University of Hyogo, Japan

Abstract

tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs.

Article and author information

Author details

  1. Akira Takano

    Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Takuya Kajita

    Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Makoto Mochizuki

    Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Toshiya Endo

    Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Tohru Yoshihisa

    Graduate School of Life Science, University of Hyogo, Kobe, Japan
    For correspondence
    tyoshihi@sci.u-hyogo.ac.jp
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Karsten Weis, University of California, Berkeley, United States

Version history

  1. Received: September 7, 2014
  2. Accepted: April 5, 2015
  3. Accepted Manuscript published: April 8, 2015 (version 1)
  4. Version of Record published: May 15, 2015 (version 2)

Copyright

© 2015, Takano et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,200
    views
  • 528
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Akira Takano
  2. Takuya Kajita
  3. Makoto Mochizuki
  4. Toshiya Endo
  5. Tohru Yoshihisa
(2015)
Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus
eLife 4:e04659.
https://doi.org/10.7554/eLife.04659

Share this article

https://doi.org/10.7554/eLife.04659

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.