Quantitative system drift compensates for altered maternal inputs to the gap gene network of the Scuttle Fly Megaselia abdita

  1. Karl R Wotton
  2. Eva Jiménez-Guri
  3. Anton Crombach
  4. Hilde Janssens
  5. Anna Alcaine-Colet
  6. Steffen Lemke
  7. Urs Schmidt-ott
  8. Johannes Jaeger  Is a corresponding author
  1. Centre for Genomic Regulation, Spain
  2. Ruprecht Karls University, Germany
  3. University of Chicago, United States

Abstract

The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring 'quantitative system drift'. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution.

Article and author information

Author details

  1. Karl R Wotton

    European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Eva Jiménez-Guri

    European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Anton Crombach

    European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Hilde Janssens

    European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Alcaine-Colet

    European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Steffen Lemke

    Centre for Organismal Studies, Ruprecht Karls University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Urs Schmidt-ott

    Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Johannes Jaeger

    European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
    For correspondence
    yogi.jaeger@crg.eu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Naama Barkai, Weizmann Institute of Science, Israel

Version history

  1. Received: September 16, 2014
  2. Accepted: January 2, 2015
  3. Accepted Manuscript published: January 5, 2015 (version 1)
  4. Version of Record published: February 5, 2015 (version 2)

Copyright

© 2015, Wotton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,046
    views
  • 255
    downloads
  • 64
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Karl R Wotton
  2. Eva Jiménez-Guri
  3. Anton Crombach
  4. Hilde Janssens
  5. Anna Alcaine-Colet
  6. Steffen Lemke
  7. Urs Schmidt-ott
  8. Johannes Jaeger
(2015)
Quantitative system drift compensates for altered maternal inputs to the gap gene network of the Scuttle Fly Megaselia abdita
eLife 4:e04785.
https://doi.org/10.7554/eLife.04785

Share this article

https://doi.org/10.7554/eLife.04785

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.