Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism

  1. Huasong Lu
  2. Yuahua Xue
  3. Guoying K Yu
  4. Carolina Arias
  5. Julie Lin
  6. Susan Fong
  7. Michel Faure
  8. Ben Weisburd
  9. Xiaodan Ji
  10. Alexandre Mercier
  11. James Sutton
  12. Kunxin Luo
  13. Zhenhai Gao
  14. Qiang Zhou  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Xiamen University, China
  3. Novartis Institute for BioMedical Research, United States

Abstract

CDK9 is the kinase subunit of P-TEFb that enables RNA polymerase (Pol) II's transition from promoter-proximal pausing to productive elongation. Although considerable interest exists in CDK9 as a therapeutic target, little progress has been made due to lack of highly selective inhibitors. Here, we describe the development of i-CDK9 as such an inhibitor that potently suppresses CDK9 phosphorylation of substrates and causes genome-wide Pol II pausing. While most genes experience reduced expression, MYC and other primary response genes increase expression upon sustained i-CDK9 treatment. Essential for this increase, the bromodomain protein BRD4 captures P-TEFb from 7SK snRNP to deliver to target genes and also enhances CDK9's activity and resistance to inhibition. Because the i-CDK9-induced MYC expression and binding to P-TEFb compensate for P-TEFb's loss of activity, only simultaneously inhibiting CDK9 and MYC/BRD4 can efficiently induce growth arrest and apoptosis of cancer cells, suggesting the potential of a combinatorial treatment strategy.

Article and author information

Author details

  1. Huasong Lu

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yuahua Xue

    Innovation Center of Cell Signaling Network, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Guoying K Yu

    Novartis Institute for BioMedical Research, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Carolina Arias

    Novartis Institute for BioMedical Research, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Julie Lin

    Novartis Institute for BioMedical Research, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Susan Fong

    Novartis Institute for BioMedical Research, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Michel Faure

    Novartis Institute for BioMedical Research, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ben Weisburd

    Novartis Institute for BioMedical Research, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Xiaodan Ji

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Alexandre Mercier

    Novartis Institute for BioMedical Research, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. James Sutton

    Novartis Institute for BioMedical Research, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Kunxin Luo

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Zhenhai Gao

    Novartis Institute for BioMedical Research, Emeryville, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Qiang Zhou

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    qzhou@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Kevin Struhl, Harvard Medical School, United States

Version history

  1. Received: January 18, 2015
  2. Accepted: June 16, 2015
  3. Accepted Manuscript published: June 17, 2015 (version 1)
  4. Version of Record published: July 3, 2015 (version 2)

Copyright

© 2015, Lu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,936
    views
  • 1,597
    downloads
  • 108
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Huasong Lu
  2. Yuahua Xue
  3. Guoying K Yu
  4. Carolina Arias
  5. Julie Lin
  6. Susan Fong
  7. Michel Faure
  8. Ben Weisburd
  9. Xiaodan Ji
  10. Alexandre Mercier
  11. James Sutton
  12. Kunxin Luo
  13. Zhenhai Gao
  14. Qiang Zhou
(2015)
Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism
eLife 4:e06535.
https://doi.org/10.7554/eLife.06535

Share this article

https://doi.org/10.7554/eLife.06535

Further reading

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Maximilian Nagel, Marco Niestroj ... Marc Spehr
    Research Article

    In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective ‘raw’ chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal’s sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary ‘secretome’, both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.