The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis

  1. Christian S M Helker
  2. Annika Schuermann
  3. Cathrin Pollmann
  4. Serene C Chng
  5. Friedemann Kiefer
  6. Bruno Reversade
  7. Wiebke Herzog  Is a corresponding author
  1. University of Muenster, Germany
  2. Max Planck Institute for Molecular Biomedicine, Germany
  3. A*STAR, Singapore

Abstract

A key step in the de novo formation of the embryonic vasculature is the migration of endothelial precursors, the angioblasts, to the position of the future vessels. To form the first axial vessels, angioblasts migrate towards the midline and coalesce underneath the notochord. Vascular endothelial growth factor (Vegf) has been proposed to serve as a chemoattractant for the angioblasts and to regulate this medial migration. Here we challenge this model and instead demonstrate that angioblasts rely on their intrinsic expression of Apelin receptors (Aplr, APJ) for their migration to the midline. We further show that during this angioblast migration Apelin receptor signaling is mainly triggered by the recently discovered ligand Elabela (Ela). As neither of the ligands Ela or Apelin (Apln) nor their receptors have previously been implicated in regulating angioblast migration, we hereby provide a novel mechanism for regulating vasculogenesis, with direct relevance to physiological and pathological angiogenesis.

Article and author information

Author details

  1. Christian S M Helker

    n/a, University of Muenster, Muenster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Annika Schuermann

    n/a, University of Muenster, Muenster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Cathrin Pollmann

    n/a, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Serene C Chng

    Institute of Medical Biology, Human Genetics and Embryology Laboratory, A*STAR, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Friedemann Kiefer

    n/a, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Bruno Reversade

    Institute of Medical Biology, Human Genetics and Embryology Laboratory, A*STAR, Sinagapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Wiebke Herzog

    n/a, University of Muenster, Muenster, Germany
    For correspondence
    wiebke.herzog@mpi-muenster.mpg.de
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Tanya T Whitfield, University of Sheffield, United Kingdom

Ethics

Animal experimentation: All animal experiments were performed in strict accordance with the relevant laws and institutional guidelines the Max Planck Institute for Molecular Biomedicine, Muenster and the Institute of Medical Biology, Singapore. All protocols were approved by animal ethics committees of the state of North Rhine-Westfalia (Germany,# 39.32.7.1) and Singapore, respectively, and all efforts were made to minimize suffering.

Version history

  1. Received: January 27, 2015
  2. Accepted: May 22, 2015
  3. Accepted Manuscript published: May 27, 2015 (version 1)
  4. Version of Record published: June 16, 2015 (version 2)

Copyright

© 2015, Helker et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,971
    views
  • 782
    downloads
  • 88
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Christian S M Helker
  2. Annika Schuermann
  3. Cathrin Pollmann
  4. Serene C Chng
  5. Friedemann Kiefer
  6. Bruno Reversade
  7. Wiebke Herzog
(2015)
The hormonal peptide Elabela guides angioblasts to the midline during vasculogenesis
eLife 4:e06726.
https://doi.org/10.7554/eLife.06726

Share this article

https://doi.org/10.7554/eLife.06726

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.