Cis and trans RET signaling control the survival and central projection growth of rapidly adapting mechanoreceptors

  1. Michael S Fleming
  2. Anna Vysochan
  3. Sόnia Paixão
  4. Jingwen Niu
  5. Rüdiger Klein
  6. Joseph M Savitt
  7. Wenqin Luo  Is a corresponding author
  1. University of Pennsylvania, United States
  2. Max Planck Institute of Neurobiology, Germany
  3. Parkinson's Disease and Movement Disorder Center of Maryland, United States

Abstract

RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the physiological roles of trans signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfrα2 and depend on Ret for survival and central projection growth. Here, we show that Ret and Gfrα2 null mice display comparable early central projection deficits, but Gfrα2 null RA mechanoreceptors recover later. Loss of Gfrα1, the co-receptor implicated in activating RET in trans, causes no significant central projection or cell survival deficit, but Gfrα1;Gfrα2 double nulls phenocopy Ret nulls. Finally, we demonstrate that GFRα1 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that trans and cis RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling.

Article and author information

Author details

  1. Michael S Fleming

    Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anna Vysochan

    Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sόnia Paixão

    Molecules - Signals - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Jingwen Niu

    Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rüdiger Klein

    Molecules - Signals - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Joseph M Savitt

    Parkinson's Disease and Movement Disorder Center of Maryland, Elkridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wenqin Luo

    Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    For correspondence
    luow@mail.med.upenn.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Kang Shen, Howard Hughes Medical Institute, Stanford University, United States

Ethics

Animal experimentation: Mice except GDNFlacZ line were raised in a barrier facility in Hill Pavilion, the618 University of Pennsylvania. All procedures were conducted according to animal protocols619 approved by Institutional Animal Care and Use Committee (IACUC) of the University of620 Pennsylvania and National Institutes of Health guidelines. GDNFlacZ mice were raised in621 accordance with the European Community Council Directive of November 24, 1986622 (86/609/EEC), and approved by the ethics.

Version history

  1. Received: February 3, 2015
  2. Accepted: April 1, 2015
  3. Accepted Manuscript published: April 2, 2015 (version 1)
  4. Version of Record published: April 24, 2015 (version 2)

Copyright

© 2015, Fleming et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,409
    views
  • 461
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael S Fleming
  2. Anna Vysochan
  3. Sόnia Paixão
  4. Jingwen Niu
  5. Rüdiger Klein
  6. Joseph M Savitt
  7. Wenqin Luo
(2015)
Cis and trans RET signaling control the survival and central projection growth of rapidly adapting mechanoreceptors
eLife 4:e06828.
https://doi.org/10.7554/eLife.06828

Share this article

https://doi.org/10.7554/eLife.06828

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Tobias Weinberger, Messerer Denise ... Christian Schulz
    Research Article

    Cardiac macrophages are heterogenous in phenotype and functions, which has been associated with differences in their ontogeny. Despite extensive research, our understanding of the precise role of different subsets of macrophages in ischemia/reperfusion (I/R) injury remains incomplete. We here investigated macrophage lineages and ablated tissue macrophages in homeostasis and after I/R injury in a CSF1R-dependent manner. Genomic deletion of a fms-intronic regulatory element (FIRE) in the Csf1r locus resulted in specific absence of resident homeostatic and antigen-presenting macrophages, without affecting the recruitment of monocyte-derived macrophages to the infarcted heart. Specific absence of homeostatic, monocyte-independent macrophages altered the immune cell crosstalk in response to injury and induced proinflammatory neutrophil polarization, resulting in impaired cardiac remodeling without influencing infarct size. In contrast, continuous CSF1R inhibition led to depletion of both resident and recruited macrophage populations. This augmented adverse remodeling after I/R and led to an increased infarct size and deterioration of cardiac function. In summary, resident macrophages orchestrate inflammatory responses improving cardiac remodeling, while recruited macrophages determine infarct size after I/R injury. These findings attribute distinct beneficial effects to different macrophage populations in the context of myocardial infarction.

    1. Cell Biology
    2. Developmental Biology
    Corey D Holman, Alexander P Sakers ... Patrick Seale
    Research Article

    The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.