The viral context instructs the redundancy of costimulatory pathways in driving CD8+ T cell expansion

  1. Suzanne PM Welten
  2. Anke Redeker
  3. Kees LMC Franken
  4. Jennifer D Oduro
  5. Ferry Ossendorp
  6. Luka Čičin-Šain
  7. Cornelis JM Melief
  8. Peter Aichele
  9. Ramon Arens  Is a corresponding author
  1. Leiden University Medical Center, Netherlands
  2. Helmholtz-Zentrum für Infektionsforschung GmbH, Germany
  3. University of Freiburg, Germany

Abstract

Signals delivered by costimulatory molecules are implicated in driving T cell expansion. The requirements for these signals, however, vary from dispensable to essential in different infections. We examined the underlying mechanisms of this differential T cell costimulation dependence and found that the viral context determined the dependence on CD28/B7-mediated costimulation for expansion of naive and memory CD8+ T cells, indicating that the requirement for costimulatory signals is not imprinted. Notably, related to the high-level costimulatory molecule expression induced by LCMV, CD28/B7-mediated costimulation was dispensable for accumulation of LCMV-specific CD8+ T cells because of redundancy with the costimulatory pathways induced by TNF receptor family members (i.e. CD27, OX40, and 4-1BB). Type I IFN signaling in viral-specific CD8+ T cells is slightly redundant with costimulatory signals. These results highlight that pathogen-specific conditions differentially and uniquely dictate the utilization of costimulatory pathways allowing shaping of effector and memory antigen-specific CD8+ T cell responses.

Article and author information

Author details

  1. Suzanne PM Welten

    Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Anke Redeker

    Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Kees LMC Franken

    Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  4. Jennifer D Oduro

    Department for Vaccinology/Immune Aging and Chronic Infection, Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Ferry Ossendorp

    Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Luka Čičin-Šain

    Department for Vaccinology/Immune Aging and Chronic Infection, Helmholtz-Zentrum für Infektionsforschung GmbH, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Cornelis JM Melief

    Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter Aichele

    Department of Medical Microbiology and Hygiene, Institute of Immunology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Ramon Arens

    Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
    For correspondence
    R.Arens@lumc.nl
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Satyajit Rath, National Institute of Immunology, India

Ethics

Animal experimentation: Animal experiments were approved by the Animal Experiments Committee of the LUMC (reference numbers: 12006, 13150, 14046 and 14066) and performed according to the recommendations and guidelines set by the LUMC and by the Dutch Experiments on Animals Act that serves the implementation of 'Guidelines on the protection of experimental animals' by the Council of Europe.

Version history

  1. Received: March 15, 2015
  2. Accepted: August 10, 2015
  3. Accepted Manuscript published: August 11, 2015 (version 1)
  4. Version of Record published: September 3, 2015 (version 2)

Copyright

© 2015, Welten et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,251
    views
  • 495
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Suzanne PM Welten
  2. Anke Redeker
  3. Kees LMC Franken
  4. Jennifer D Oduro
  5. Ferry Ossendorp
  6. Luka Čičin-Šain
  7. Cornelis JM Melief
  8. Peter Aichele
  9. Ramon Arens
(2015)
The viral context instructs the redundancy of costimulatory pathways in driving CD8+ T cell expansion
eLife 4:e07486.
https://doi.org/10.7554/eLife.07486

Share this article

https://doi.org/10.7554/eLife.07486

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.