The mesh is a network of microtubule connectors that stabilizes individual kinetochore fibers of the mitotic spindle

  1. Faye M Nixon
  2. Cristina Gutiérrez-Caballero
  3. Fiona E Hood
  4. Daniel G Booth
  5. Ian A Prior
  6. Stephen J Royle  Is a corresponding author
  1. Warwick Medical School, United Kingdom
  2. University of Liverpool, United Kingdom
  3. University of Edinburgh, United Kingdom

Abstract

Kinetochore fibers (K-fibers) of the mitotic spindle are force-generating units that power chromosome movement during mitosis. K-fibers are composed of many microtubules that are held together throughout their length. Here we show, using 3D electron microscopy, that K-fiber microtubules are connected by a network of microtubule connectors. We term this network 'the mesh'. The K-fiber mesh is made of linked multipolar connectors. Each connector has up to four struts, so that a single connector can link up to four microtubules. Molecular manipulation of the mesh by overexpression of TACC3 causes disorganization of the K-fiber microtubules. Optimal stabilization of K-fibers by the mesh is required for normal progression through mitosis. We propose that the mesh stabilizes K-fibers by pulling MTs together and thereby maintaining the integrity of the fiber. Our work thus identifies the K-fiber meshwork of linked multipolar connectors as a key integrator and determinant of K-fiber structure and function.

Article and author information

Author details

  1. Faye M Nixon

    Division of Biomedical Cell Biology, Warwick Medical School, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Cristina Gutiérrez-Caballero

    Division of Biomedical Cell Biology, Warwick Medical School, Coventry, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Fiona E Hood

    Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel G Booth

    Wellcome Trust Centre for Cell Biolog, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Ian A Prior

    Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephen J Royle

    Division of Biomedical Cell Biology, Warwick Medical School, Coventry, United Kingdom
    For correspondence
    s.j.royle@warwick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Anna Akhmanova, Utrecht University, Netherlands

Version history

  1. Received: March 20, 2015
  2. Accepted: June 18, 2015
  3. Accepted Manuscript published: June 19, 2015 (version 1)
  4. Version of Record published: July 9, 2015 (version 2)

Copyright

© 2015, Nixon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,624
    views
  • 1,141
    downloads
  • 53
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Faye M Nixon
  2. Cristina Gutiérrez-Caballero
  3. Fiona E Hood
  4. Daniel G Booth
  5. Ian A Prior
  6. Stephen J Royle
(2015)
The mesh is a network of microtubule connectors that stabilizes individual kinetochore fibers of the mitotic spindle
eLife 4:e07635.
https://doi.org/10.7554/eLife.07635

Share this article

https://doi.org/10.7554/eLife.07635

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.