An open-source computational and data resource to analyze digital maps of immunopeptidomes

  1. Etienne Caron  Is a corresponding author
  2. Lucia Espona
  3. Daniel J Kowalewski
  4. Heiko Schuster
  5. Nicola Ternette
  6. Adán Alpízar
  7. Ralf B Schittenhelm
  8. Sri H Ramarathinam
  9. Cecilia S Lindestam Arlehamn
  10. Ching Chiek Koh
  11. Ludovic C Gillet
  12. Armin Rabsteyn
  13. Pedro Navarro
  14. Sangtae Kim
  15. Henry Lam
  16. Theo Sturm
  17. Miguel Marcilla
  18. Alessandro Sette
  19. David S Campbell
  20. Eric W Deutsch
  21. Robert L Moritz
  22. Anthony W Purcell
  23. Hans-Georg Rammensee
  24. Stefan Stevanovic
  25. Ruedi Aebersold
  1. ETH Zürich, Switzerland
  2. University of Tübingen, Germany
  3. University of Oxford, United Kingdom
  4. Spanish National Biotechnology Centre, Spain
  5. Monash University, Australia
  6. Monash University, United States
  7. La Jolla Institute for Allergy and Immunology, United States
  8. University Medical Center of the Johannes Gutenberg University Mainz, Germany
  9. Pacific Northwest National Laboratory, United States
  10. Hong Kong University of Science and Technology, China
  11. Institute for Systems Biology, United States

Abstract

We present a novel mass spectrometry-based high-throughput workflow and an open-source computational and data resource to reproducibly identify and quantify HLA-associated peptides. Collectively, the resources support the generation of HLA allele-specific peptide assay libraries consisting of consensus fragment ion spectra, and the analysis of quantitative digital maps of HLA peptidomes generated from a range of biological sources by SWATH mass spectrometry (MS). This study represents the first community-based effort to develop a robust platform for the reproducible and quantitative measurement of the entire repertoire of peptides presented by HLA molecules, an essential step towards the design of efficient immunotherapies.

Article and author information

Author details

  1. Etienne Caron

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    For correspondence
    caron@imsb.biol.ethz.ch
    Competing interests
    The authors declare that no competing interests exist.
  2. Lucia Espona

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel J Kowalewski

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Heiko Schuster

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Nicola Ternette

    Target Discovery Institute Mass Spectrometry Laboratory, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Adán Alpízar

    Proteomics Unit, Spanish National Biotechnology Centre, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Ralf B Schittenhelm

    Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Sri H Ramarathinam

    Department of Biochemistry and Molecular Biology, Monash University, Clayton, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Cecilia S Lindestam Arlehamn

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Ching Chiek Koh

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  11. Ludovic C Gillet

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Armin Rabsteyn

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Pedro Navarro

    Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Sangtae Kim

    Pacific Northwest National Laboratory, Richland, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Henry Lam

    Division of Biomedical Engineering and Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  16. Theo Sturm

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  17. Miguel Marcilla

    Proteomics Unit, Spanish National Biotechnology Centre, Madrid, Spain
    Competing interests
    The authors declare that no competing interests exist.
  18. Alessandro Sette

    La Jolla Institute for Allergy and Immunology, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. David S Campbell

    Institute for Systems Biology, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Eric W Deutsch

    Institute for Systems Biology, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  21. Robert L Moritz

    Institute for Systems Biology, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  22. Anthony W Purcell

    Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  23. Hans-Georg Rammensee

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  24. Stefan Stevanovic

    Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  25. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Arup K Chakraborty, Massachusetts Institute of Technology, United States

Ethics

Human subjects: Informed consent was obtained in accordance with the Declaration of Helsinki protocol. The study was performed according to the guidelines of the local ethics committee (University of Tubingen, Germany).

Version history

  1. Received: March 23, 2015
  2. Accepted: July 7, 2015
  3. Accepted Manuscript published: July 8, 2015 (version 1)
  4. Version of Record published: July 20, 2015 (version 2)

Copyright

© 2015, Caron et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,776
    views
  • 1,226
    downloads
  • 86
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Etienne Caron
  2. Lucia Espona
  3. Daniel J Kowalewski
  4. Heiko Schuster
  5. Nicola Ternette
  6. Adán Alpízar
  7. Ralf B Schittenhelm
  8. Sri H Ramarathinam
  9. Cecilia S Lindestam Arlehamn
  10. Ching Chiek Koh
  11. Ludovic C Gillet
  12. Armin Rabsteyn
  13. Pedro Navarro
  14. Sangtae Kim
  15. Henry Lam
  16. Theo Sturm
  17. Miguel Marcilla
  18. Alessandro Sette
  19. David S Campbell
  20. Eric W Deutsch
  21. Robert L Moritz
  22. Anthony W Purcell
  23. Hans-Georg Rammensee
  24. Stefan Stevanovic
  25. Ruedi Aebersold
(2015)
An open-source computational and data resource to analyze digital maps of immunopeptidomes
eLife 4:e07661.
https://doi.org/10.7554/eLife.07661

Share this article

https://doi.org/10.7554/eLife.07661

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Taegon Chung, Iksoo Chang, Sangyeol Kim
    Research Article

    Locomotion is a fundamental behavior of Caenorhabditis elegans (C. elegans). Previous works on kinetic simulations of animals helped researchers understand the physical mechanisms of locomotion and the muscle-controlling principles of neuronal circuits as an actuator part. It has yet to be understood how C. elegans utilizes the frictional forces caused by the tension of its muscles to perform sequenced locomotive behaviors. Here, we present a two-dimensional rigid body chain model for the locomotion of C. elegans by developing Newtonian equations of motion for each body segment of C. elegans. Having accounted for friction-coefficients of the surrounding environment, elastic constants of C. elegans, and its kymogram from experiments, our kinetic model (ElegansBot) reproduced various locomotion of C. elegans such as, but not limited to, forward-backward-(omega turn)-forward locomotion constituting escaping behavior and delta-turn navigation. Additionally, ElegansBot precisely quantified the forces acting on each body segment of C. elegans to allow investigation of the force distribution. This model will facilitate our understanding of the detailed mechanism of various locomotive behaviors at any given friction-coefficients of the surrounding environment. Furthermore, as the model ensures the performance of realistic behavior, it can be used to research actuator-controller interaction between muscles and neuronal circuits.