MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture

  1. Jonathan R Friedman
  2. Arnaud Mourier
  3. Justin Yamada
  4. J Michael McCaffery
  5. Jodi Nunnari  Is a corresponding author
  1. University of California, Davis, United States
  2. Max Planck Institute for Biology of Ageing, Germany
  3. Johns Hopkins University, United States

Abstract

The conserved MICOS complex functions as a primary determinant of mitochondrial inner membrane structure. We address the organization and functional roles of MICOS and identify two independent MICOS subcomplexes: Mic27/Mic10/Mic12, whose assembly is dependent on respiratory complexes and the mitochondrial lipid cardiolipin, and Mic60/Mic19, which assembles independent of these factors. Our data suggest that MICOS subcomplexes independently localize to cristae junctions and are connected via Mic19, which functions to regulate subcomplex distribution, and thus, potentially also cristae junction copy number. MICOS subunits have non-redundant functions as the absence of MICOS subcomplexes results in more severe morphological and respiratory growth defects than deletion of single MICOS subunits or subcomplexes. Mitochondrial defects resulting from MICOS loss are caused by misdistribution of respiratory complexes in the inner membrane. Together, our data are consistent with a model where MICOS, mitochondrial lipids and respiratory complexes coordinately build a functional and correctly shaped mitochondrial inner membrane.

Article and author information

Author details

  1. Jonathan R Friedman

    Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  2. Arnaud Mourier

    Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
    Competing interests
    No competing interests declared.
  3. Justin Yamada

    Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  4. J Michael McCaffery

    Integrated Imaging Center, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. Jodi Nunnari

    Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
    For correspondence
    jmnunnari@ucdavis.edu
    Competing interests
    Jodi Nunnari, Reviewing editor, eLife On Scientific Advisory Board of Mitobridge, and declares no financial interest related to this work..

Reviewing Editor

  1. Richard J Youle, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States

Version history

  1. Received: March 26, 2015
  2. Accepted: April 27, 2015
  3. Accepted Manuscript published: April 28, 2015 (version 1)
  4. Version of Record published: May 18, 2015 (version 2)

Copyright

© 2015, Friedman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,289
    views
  • 1,940
    downloads
  • 205
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan R Friedman
  2. Arnaud Mourier
  3. Justin Yamada
  4. J Michael McCaffery
  5. Jodi Nunnari
(2015)
MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture
eLife 4:e07739.
https://doi.org/10.7554/eLife.07739

Share this article

https://doi.org/10.7554/eLife.07739

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.