Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation

  1. Zhengjian Zhang  Is a corresponding author
  2. Zarko Boskovic
  3. Mahmud M Hussain
  4. Wenxin Hu
  5. Carla Inouye
  6. Han-Je Kim
  7. A Katherine Abole
  8. Mary K Doud
  9. Timothy A Lewis
  10. Angela N Koehler
  11. Stuart L Schreiber
  12. Robert Tjian
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States
  2. Howard Hughes Medical Institute, Harvard University, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. Broad Institute, United States
  5. University of California, Berkeley, United States

Abstract

Intrinsically disordered protein regions (IDRs) are peptide segments that fail to form stable 3-dimensional structures in the absence of partner proteins. They are abundant in eukaryotic proteomes and are often associated with human diseases, but their biological functions have been elusive to study. Here we report the identification of a tin(IV) oxochloride-derived cluster that binds an evolutionarily conserved IDR within the metazoan TFIID transcription complex. Binding arrests an isomerization of promoter-bound TFIID that is required for the engagement of Pol II during the first (de novo) round of transcription initiation. However, the specific chemical probe does not affect reinitiation, which requires the re-entry of Pol II, thus, mechanistically distinguishing these two modes of transcription initiation. This work also suggests a new avenue for targeting the elusive IDRs by harnessing certain features of metal-based complexes for mechanistic studies, and for the development of novel pharmaceutical interventions.

Article and author information

Author details

  1. Zhengjian Zhang

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    zhangzh@janelia.hhmi.org
    Competing interests
    No competing interests declared.
  2. Zarko Boskovic

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  3. Mahmud M Hussain

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Wenxin Hu

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  5. Carla Inouye

    Li Ka Shing Center for Biomedical and Health Sciences, Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Han-Je Kim

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  7. A Katherine Abole

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Mary K Doud

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  9. Timothy A Lewis

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  10. Angela N Koehler

    Center for the Science of Therapeutics, Broad Institute, Cambridge, United States
    Competing interests
    No competing interests declared.
  11. Stuart L Schreiber

    Department of Chemistry and Chemical Biology, Howard Hughes Medical Institute, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  12. Robert Tjian

    Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    Robert Tjian, President of the Howard Hughes Medical Institute (2009-present), one of the three founding funders of eLife, and a member of eLife's Board of Directors.

Reviewing Editor

  1. Danny Reinberg, Howard Hughes Medical Institute, New York University School of Medicine, United States

Version history

  1. Received: April 29, 2015
  2. Accepted: August 27, 2015
  3. Accepted Manuscript published: August 28, 2015 (version 1)
  4. Version of Record published: September 25, 2015 (version 2)

Copyright

© 2015, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,671
    views
  • 611
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhengjian Zhang
  2. Zarko Boskovic
  3. Mahmud M Hussain
  4. Wenxin Hu
  5. Carla Inouye
  6. Han-Je Kim
  7. A Katherine Abole
  8. Mary K Doud
  9. Timothy A Lewis
  10. Angela N Koehler
  11. Stuart L Schreiber
  12. Robert Tjian
(2015)
Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation
eLife 4:e07777.
https://doi.org/10.7554/eLife.07777

Share this article

https://doi.org/10.7554/eLife.07777

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.