Abstract

In C. elegans, ablation of germline stem cells (GSCs) extends lifespan, but also increases fat accumulation and alters lipid metabolism, raising the intriguing question of how these effects might be related. Here we show that a lack of GSCs results in a broad transcriptional reprogramming, in which the conserved detoxification regulator SKN-1/Nrf increases stress resistance, proteasome activity, and longevity. SKN-1 also activates diverse lipid metabolism genes and reduces fat storage, thereby alleviating the increased fat accumulation caused by GSC absence. Surprisingly, SKN-1 is activated by signals from this fat, which appears to derive from unconsumed yolk that was produced for reproduction. We conclude that SKN-1 plays a direct role in maintaining lipid homeostasis, in which it is activated by lipids. This SKN-1 function may explain the importance of mammalian Nrf proteins in fatty liver disease, and suggests that particular endogenous or dietary lipids might promote health through SKN-1/Nrf.

Article and author information

Author details

  1. Michael J Steinbaugh

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sri Devi Narasimhan

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Stacey Robida-Stubbs

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lorenza E Moronetti Mazzeo

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jonathan M Dreyfuss

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. John M Hourihan

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Prashant Raghavan

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Theresa N Operaña

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Reza Esmaillie

    Research Division, Joslin Diabetes Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. T Keith Blackwell

    Research Division, Joslin Diabetes Center, Boston, United States
    For correspondence
    keith.blackwell@joslin.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Kang Shen, Howard Hughes Medical Institute, Stanford University, United States

Version history

  1. Received: March 31, 2015
  2. Accepted: July 9, 2015
  3. Accepted Manuscript published: July 21, 2015 (version 1)
  4. Version of Record published: August 19, 2015 (version 2)
  5. Version of Record updated: January 25, 2017 (version 3)

Copyright

© 2015, Steinbaugh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,164
    views
  • 1,458
    downloads
  • 165
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michael J Steinbaugh
  2. Sri Devi Narasimhan
  3. Stacey Robida-Stubbs
  4. Lorenza E Moronetti Mazzeo
  5. Jonathan M Dreyfuss
  6. John M Hourihan
  7. Prashant Raghavan
  8. Theresa N Operaña
  9. Reza Esmaillie
  10. T Keith Blackwell
(2015)
Lipid-mediated regulation of SKN-1/Nrf in response to germ cell absence
eLife 4:e07836.
https://doi.org/10.7554/eLife.07836

Share this article

https://doi.org/10.7554/eLife.07836

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.