Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutières syndrome

  1. Yoong Wearn Lim
  2. Lionel A Sanz
  3. Xiaoqin Xu
  4. Stella R Hartono
  5. Frédéric Chédin  Is a corresponding author
  1. University of California, Davis, United States

Abstract

Aicardi-Goutières syndrome (AGS) is a severe childhood inflammatory disorder that shows clinical and genetic overlap with systemic lupus erythematosus (SLE). AGS is thought to arise from the accumulation of incompletely metabolized endogenous nucleic acid species owing to mutations in nucleic acid degrading enzymes TREX1 (AGS1), RNase H2 (AGS2, 3 and 4) and SAMHD1 (AGS5). However, the identity and source of such immunogenic nucleic acid species remain undefined. Using genome-wide approaches, we show that fibroblasts from AGS patients with AGS1-5 mutations are burdened by excessive loads of RNA:DNA hybrids. Using MethylC-seq, we show that AGS fibroblasts display pronounced and global loss of DNA methylation and demonstrate that AGS-specific RNA:DNA hybrids often occur within DNA hypomethylated regions. Altogether, our data suggest that RNA:DNA hybrids may represent a common immunogenic form of nucleic acids in AGS and provide the first evidence of epigenetic perturbations in AGS, furthering the links between AGS and SLE.

Article and author information

Author details

  1. Yoong Wearn Lim

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Lionel A Sanz

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xiaoqin Xu

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Stella R Hartono

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Frédéric Chédin

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    For correspondence
    flchedin@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Bing Ren, University of California, San Diego School of Medicine, United States

Version history

  1. Received: April 9, 2015
  2. Accepted: July 15, 2015
  3. Accepted Manuscript published: July 16, 2015 (version 1)
  4. Version of Record published: August 7, 2015 (version 2)

Copyright

© 2015, Lim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,458
    views
  • 1,188
    downloads
  • 126
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yoong Wearn Lim
  2. Lionel A Sanz
  3. Xiaoqin Xu
  4. Stella R Hartono
  5. Frédéric Chédin
(2015)
Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutières syndrome
eLife 4:e08007.
https://doi.org/10.7554/eLife.08007

Share this article

https://doi.org/10.7554/eLife.08007

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.