Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a

  1. Laura Yelin-Bekerman
  2. Idan Elbaz
  3. Alex Diber
  4. Dvir Dahary
  5. Liron Gibbs-Bar
  6. Shahar Alon
  7. Tali Lerer-Goldshtein
  8. Lior Appelbaum  Is a corresponding author
  1. Bar-Ilan University, Israel
  2. Toldot Genetics, Israel
  3. Weizmann Institute of Science, Israel
  4. Massachusetts Institute of Technology, United States

Abstract

Sleep has been conserved throughout evolution; however, the molecular and neuronal mechanisms of sleep are largely unknown. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate sleep/wake states, feeding, stress, and reward. To elucidate the mechanism that enables these various functions and to identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in hcrt:EGFP zebrafish. Dozens of Hcrt-neuron-specific transcripts were identified and comprehensive high-resolution imaging revealed gene-specific localization in all or subsets of Hcrt neurons. Clusters of Hcrt-neuron-specific genes are predicted to be regulated by shared transcription factors. These findings show that Hcrt neurons are heterogeneous and that integrative molecular mechanisms orchestrate their diverse functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The mutant kcnh4a(kcnh4a-/-) larvae showed reduced sleep time and consolidation, specifically during the night, suggesting that Kcnh4a regulates sleep.

Article and author information

Author details

  1. Laura Yelin-Bekerman

    The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Idan Elbaz

    The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Alex Diber

    The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Dvir Dahary

    Toldot Genetics, Hod Hasharon, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Liron Gibbs-Bar

    Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Shahar Alon

    Media Lab, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tali Lerer-Goldshtein

    The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Lior Appelbaum

    The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
    For correspondence
    lior.appelbaum@biu.ac.il
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Joel K Elmquist, University of Texas Southwestern Medical Center, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the guide for the laboratory use of zebrafish (Danio rerio) by Monte Westerfield, University of Oregon. All of the experiments were carried out under strict oversight of the Institutional Animal Care and Use Committee (IACUC) and with full compliance with the best criteria of animal welfare. The protocol was approved by the IACUC of Bar Ilan University (Permit Number: BIU-7-02-11).

Version history

  1. Received: May 10, 2015
  2. Accepted: September 30, 2015
  3. Accepted Manuscript published: October 1, 2015 (version 1)
  4. Version of Record published: December 10, 2015 (version 2)

Copyright

© 2015, Yelin-Bekerman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,656
    views
  • 647
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Yelin-Bekerman
  2. Idan Elbaz
  3. Alex Diber
  4. Dvir Dahary
  5. Liron Gibbs-Bar
  6. Shahar Alon
  7. Tali Lerer-Goldshtein
  8. Lior Appelbaum
(2015)
Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a
eLife 4:e08638.
https://doi.org/10.7554/eLife.08638

Share this article

https://doi.org/10.7554/eLife.08638

Further reading

    1. Neuroscience
    Hao Li, Jingyu Feng ... Jufang He
    Research Article

    Cholecystokinin (CCK) is an essential modulator for neuroplasticity in sensory and emotional domains. Here, we investigated the role of CCK in motor learning using a single pellet reaching task in mice. Mice with a knockout of Cck gene (Cck−/−) or blockade of CCK-B receptor (CCKBR) showed defective motor learning ability; the success rate of retrieving reward remained at the baseline level compared to the wildtype mice with significantly increased success rate. We observed no long-term potentiation upon high-frequency stimulation in the motor cortex of Cck−/− mice, indicating a possible association between motor learning deficiency and neuroplasticity in the motor cortex. In vivo calcium imaging demonstrated that the deficiency of CCK signaling disrupted the refinement of population neuronal activity in the motor cortex during motor skill training. Anatomical tracing revealed direct projections from CCK-expressing neurons in the rhinal cortex to the motor cortex. Inactivation of the CCK neurons in the rhinal cortex that project to the motor cortex bilaterally using chemogenetic methods significantly suppressed motor learning, and intraperitoneal application of CCK4, a tetrapeptide CCK agonist, rescued the motor learning deficits of Cck−/− mice. In summary, our results suggest that CCK, which could be provided from the rhinal cortex, may surpport motor skill learning by modulating neuroplasticity in the motor cortex.

    1. Neuroscience
    Ivan Tomić, Paul M Bays
    Research Article

    Probing memory of a complex visual image within a few hundred milliseconds after its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied independently, currently no single framework quantitatively accounts for the dynamics of memory fidelity over these time scales. Here, we extend a stationary neural population model of VWM with a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each visual feature in memory, and a slower accumulation of internal error that causes memorized features to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple items compete for representation, allowing memory for the cued item to be supplemented with information from the decaying sensory trace. Empirical measurements of human recall dynamics validate these predictions while excluding alternative model architectures. A key conclusion is that differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a single resource-limited WM store.