The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation

Abstract

The RNA-binding proteins PTBP1 and PTBP2 control programs of alternative splicing during neuronal development. PTBP2 was found to maintain embryonic splicing patterns of many synaptic and cytoskeletal proteins during differentiation of neuronal progenitor cells (NPCs) into early neurons. However, the role of the earlier PTBP1 program in embryonic stem cells (ESCs) and NPCs was not clear. We show that PTBP1 controls a program of neuronal gene expression that includes the transcription factor Pbx1. We identify exons specifically regulated by PTBP1 and not PTBP2 as mouse ESCs differentiate into NPCs. We find that PTBP1 represses Pbx1 exon 7 and the expression of the neuronal Pbx1a isoform in ESCs. Using CRISPR-Cas9 to delete regulatory elements for exon 7, we induce Pbx1a expression in ESCs, finding that this activates transcription of neuronal genes. Thus, PTBP1 controls the activity of Pbx1 to suppress its neuronal transcriptional program prior to induction of NPC development.

Article and author information

Author details

  1. Anthony J Linares

    Molecular Biology Institute Graduate Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  2. Chia-Ho Lin

    Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  3. Andrey Damianov

    Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  4. Katrina L Adams

    Molecular Biology Institute Graduate Program, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Bennett G Novitch

    Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
    Competing interests
    No competing interests declared.
  6. Douglas L Black

    Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, United States
    For correspondence
    dougb@microbio.ucla.edu
    Competing interests
    Douglas L Black, Reviewing editor, eLife.

Reviewing Editor

  1. Benjamin J Blencowe, University of Toronto, Canada

Version history

  1. Received: June 6, 2015
  2. Accepted: December 22, 2015
  3. Accepted Manuscript published: December 24, 2015 (version 1)
  4. Version of Record published: February 3, 2016 (version 2)
  5. Version of Record updated: April 27, 2016 (version 3)

Copyright

© 2015, Linares et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,618
    views
  • 941
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anthony J Linares
  2. Chia-Ho Lin
  3. Andrey Damianov
  4. Katrina L Adams
  5. Bennett G Novitch
  6. Douglas L Black
(2015)
The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation
eLife 4:e09268.
https://doi.org/10.7554/eLife.09268

Share this article

https://doi.org/10.7554/eLife.09268

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.