Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast

  1. Woo Kyu Kang
  2. Yeong Hyeock Kim
  3. Hyun Ah Kang
  4. Ki-Sun Kwon
  5. Jeong-Yoon Kim  Is a corresponding author
  1. Chungnam National University, Republic of Korea
  2. Chung-Ang University, Republic of Korea
  3. Korea Research Institute of Bioscience and Biotechnology, Republic of Korea

Abstract

Sir2, an NAD+-dependent protein deacetylase, has been proposed to be a longevity factor that plays important roles in dietary restriction (DR)-mediated lifespan extension. Here we show that the Sir2's role for DR-mediated lifespan extension depends on cAMP-PKA and casein kinase 2 (CK2) signaling in yeast. Sir2 partially represses the transcription of lifespan-associated genes, such as PMA1 (encoding an H+-ATPase) and many ribosomal protein genes, through deacetylation of Lys 16 of histone H4 in the promoter regions of these genes. This repression is relieved by Sir2 S473 phosphorylation, which is mediated by active cAMP-PKA and CK2 signaling. Moderate DR increases the replicative lifespan of wild-type yeast but has no effect on that of yeast expressing the Sir2 S473E or S473A allele, suggesting that the effect of Sir2 on DR-mediated lifespan extension is negatively regulated by S473 phosphorylation. Our results demonstrate a novel mechanism by which Sir2 contributes to lifespan extension.

Article and author information

Author details

  1. Woo Kyu Kang

    Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  2. Yeong Hyeock Kim

    Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  3. Hyun Ah Kang

    Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  4. Ki-Sun Kwon

    Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
    Competing interests
    The authors declare that no competing interests exist.
  5. Jeong-Yoon Kim

    Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
    For correspondence
    jykim@cnu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Jessica K Tyler, University of Texas MD Anderson Cancer Center, United States

Version history

  1. Received: June 26, 2015
  2. Accepted: September 2, 2015
  3. Accepted Manuscript published: September 2, 2015 (version 1)
  4. Version of Record published: September 29, 2015 (version 2)

Copyright

© 2015, Kang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,911
    views
  • 748
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Woo Kyu Kang
  2. Yeong Hyeock Kim
  3. Hyun Ah Kang
  4. Ki-Sun Kwon
  5. Jeong-Yoon Kim
(2015)
Sir2 phosphorylation through cAMP-PKA and CK2 signaling inhibits the lifespan extension activity of Sir2 in yeast
eLife 4:e09709.
https://doi.org/10.7554/eLife.09709

Share this article

https://doi.org/10.7554/eLife.09709

Further reading

    1. Cell Biology
    2. Neuroscience
    Marcos Moreno-Aguilera, Alba M Neher ... Carme Gallego
    Research Article Updated

    Alternative RNA splicing is an essential and dynamic process in neuronal differentiation and synapse maturation, and dysregulation of this process has been associated with neurodegenerative diseases. Recent studies have revealed the importance of RNA-binding proteins in the regulation of neuronal splicing programs. However, the molecular mechanisms involved in the control of these splicing regulators are still unclear. Here, we show that KIS, a kinase upregulated in the developmental brain, imposes a genome-wide alteration in exon usage during neuronal differentiation in mice. KIS contains a protein-recognition domain common to spliceosomal components and phosphorylates PTBP2, counteracting the role of this splicing factor in exon exclusion. At the molecular level, phosphorylation of unstructured domains within PTBP2 causes its dissociation from two co-regulators, Matrin3 and hnRNPM, and hinders the RNA-binding capability of the complex. Furthermore, KIS and PTBP2 display strong and opposing functional interactions in synaptic spine emergence and maturation. Taken together, our data uncover a post-translational control of splicing regulators that link transcriptional and alternative exon usage programs in neuronal development.

    1. Cell Biology
    Ang Li, Jianxun Yi ... Jingsong Zhou
    Research Article

    Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder characterized by progressive weakness of almost all skeletal muscles, whereas extraocular muscles (EOMs) are comparatively spared. While hindlimb and diaphragm muscles of end-stage SOD1G93A (G93A) mice (a familial ALS mouse model) exhibit severe denervation and depletion of Pax7+satellite cells (SCs), we found that the pool of SCs and the integrity of neuromuscular junctions (NMJs) are maintained in EOMs. In cell sorting profiles, SCs derived from hindlimb and diaphragm muscles of G93A mice exhibit denervation-related activation, whereas SCs from EOMs of G93A mice display spontaneous (non-denervation-related) activation, similar to SCs from wild-type mice. Specifically, cultured EOM SCs contain more abundant transcripts of axon guidance molecules, including Cxcl12, along with more sustainable renewability than the diaphragm and hindlimb counterparts under differentiation pressure. In neuromuscular co-culture assays, AAV-delivery of Cxcl12 to G93A-hindlimb SC-derived myotubes enhances motor neuron axon extension and innervation, recapitulating the innervation capacity of EOM SC-derived myotubes. G93A mice fed with sodium butyrate (NaBu) supplementation exhibited less NMJ loss in hindlimb and diaphragm muscles. Additionally, SCs derived from G93A hindlimb and diaphragm muscles displayed elevated expression of Cxcl12 and improved renewability following NaBu treatment in vitro. Thus, the NaBu-induced transcriptomic changes resembling the patterns of EOM SCs may contribute to the beneficial effects observed in G93A mice. More broadly, the distinct transcriptomic profile of EOM SCs may offer novel therapeutic targets to slow progressive neuromuscular functional decay in ALS and provide possible ‘response biomarkers’ in pre-clinical and clinical studies.