Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster

  1. Lauren M Dembeck
  2. Katalin Böröczky
  3. Wen Huang
  4. Coby Schal
  5. Robert RH Anholt
  6. Trudy FC Mackay  Is a corresponding author
  1. Okinawa Institute of Science and Technology Graduate University, Japan
  2. Cornell University, United States
  3. North Carolina State University, United States

Abstract

Insect cuticular hydrocarbons (CHCs) prevent desiccation and serve as chemical signals that mediate social interactions. Drosophila melanogaster CHCs have been studied extensively, but the genetic basis for individual variation in CHC composition is largely unknown. We quantified variation in CHC profiles in the D. melanogaster Genetic Reference Panel (DGRP) and identified novel CHCs. We used principal component (PC) analysis to extract PCs that explain the majority of CHC variation and identified polymorphisms in or near 305 and 173 genes in females and males, respectively, associated with variation in these PCs. In addition, 17 DGRP lines contain the functional Desat2 allele characteristic of African and Caribbean D. melanogaster females (more 5,9-C27:2 and less 7,11-C27:2, female sex pheromone isomers). Disruption of expression of 24 candidate genes affected CHC composition in at least one sex. These genes are associated with fatty acid metabolism and represent mechanistic targets for individual variation in CHC composition.

Article and author information

Author details

  1. Lauren M Dembeck

    Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Katalin Böröczky

    Department of Neurobiology and Behavior, Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wen Huang

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Coby Schal

    Genetics Program, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Robert RH Anholt

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Trudy FC Mackay

    Department of Biological Sciences, North Carolina State University, Raleigh, United States
    For correspondence
    trudy_mackay@ncsu.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Daniel J Kliebenstein, University of California, Davis, Denmark

Version history

  1. Received: July 3, 2015
  2. Accepted: November 12, 2015
  3. Accepted Manuscript published: November 14, 2015 (version 1)
  4. Accepted Manuscript updated: November 20, 2015 (version 2)
  5. Version of Record published: January 15, 2016 (version 3)

Copyright

© 2015, Dembeck et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,778
    views
  • 689
    downloads
  • 111
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lauren M Dembeck
  2. Katalin Böröczky
  3. Wen Huang
  4. Coby Schal
  5. Robert RH Anholt
  6. Trudy FC Mackay
(2015)
Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster
eLife 4:e09861.
https://doi.org/10.7554/eLife.09861

Share this article

https://doi.org/10.7554/eLife.09861

Further reading

    1. Genetics and Genomics
    Gbolahan Bamgbose, Guillaume Bordet ... Alexei Tulin
    Research Article

    PARP-1 is central to transcriptional regulation under both normal and stress conditions, with the governing mechanisms yet to be fully understood. Our biochemical and ChIP-seq-based analyses showed that PARP-1 binds specifically to active histone marks, particularly H4K20me1. We found that H4K20me1 plays a critical role in facilitating PARP-1 binding and the regulation of PARP-1-dependent loci during both development and heat shock stress. Here, we report that the sole H4K20 mono-methylase, pr-set7, and parp-1 Drosophila mutants undergo developmental arrest. RNA-seq analysis showed an absolute correlation between PR-SET7- and PARP-1-dependent loci expression, confirming co-regulation during developmental phases. PARP-1 and PR-SET7 are both essential for activating hsp70 and other heat shock genes during heat stress, with a notable increase of H4K20me1 at their gene body. Mutating pr-set7 disrupts monomethylation of H4K20 along heat shock loci and abolish PARP-1 binding there. These data strongly suggest that H4 monomethylation is a key triggering point in PARP-1 dependent processes in chromatin.

    1. Cancer Biology
    2. Genetics and Genomics
    Ting Zhang, Alisa Ambrodji ... Steven M Offer
    Research Article

    Enhancers are critical for regulating tissue-specific gene expression, and genetic variants within enhancer regions have been suggested to contribute to various cancer-related processes, including therapeutic resistance. However, the precise mechanisms remain elusive. Using a well-defined drug-gene pair, we identified an enhancer region for dihydropyrimidine dehydrogenase (DPD, DPYD gene) expression that is relevant to the metabolism of the anti-cancer drug 5-fluorouracil (5-FU). Using reporter systems, CRISPR genome-edited cell models, and human liver specimens, we demonstrated in vitro and vivo that genotype status for the common germline variant (rs4294451; 27% global minor allele frequency) located within this novel enhancer controls DPYD transcription and alters resistance to 5-FU. The variant genotype increases recruitment of the transcription factor CEBPB to the enhancer and alters the level of direct interactions between the enhancer and DPYD promoter. Our data provide insight into the regulatory mechanisms controlling sensitivity and resistance to 5-FU.