Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress

  1. Santiago Vernia
  2. Caroline Morel
  3. Joseph C Madara
  4. Julie Cavanagh-Kyros
  5. Tamera Barrett
  6. Kathryn Chase
  7. Norman J Kennedy
  8. Dae Young Jung
  9. Jason K Kim
  10. Neil Aronin
  11. Richard A Flavell
  12. Bradford B Lowell
  13. Roger J Davis  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. Beth Israel Deaconess Medical Center, United States
  3. Howard Hughes Medical Institute, Yale University School of Medicine, United States

Abstract

The cJun NH2-terminal kinase (JNK) signaling pathway is implicated in the response to metabolic stress. Indeed, it is established that the ubiquitously expressed JNK1 and JNK2 isoforms regulate energy expenditure and insulin resistance. However, the role of the neuron-specific isoform JNK3 is unclear. Here we demonstrate that JNK3 deficiency causes hyperphagia selectively in high fat diet (HFD)-fed mice. JNK3 deficiency in neurons that express the leptin receptor LEPRb was sufficient to cause HFD-dependent hyperphagia. Studies of sub-groups of leptin-responsive neurons demonstrated that JNK3 deficiency in AgRP neurons, but not POMC neurons, was sufficient to cause the hyperphagic response. These effects of JNK3 deficiency were associated with enhanced excitatory signaling by AgRP neurons in HFD-fed mice. JNK3 therefore provides a mechanism that contributes to homeostatic regulation of energy balance in response to metabolic stress.

Article and author information

Author details

  1. Santiago Vernia

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  2. Caroline Morel

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  3. Joseph C Madara

    Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    No competing interests declared.
  4. Julie Cavanagh-Kyros

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  5. Tamera Barrett

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  6. Kathryn Chase

    Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  7. Norman J Kennedy

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  8. Dae Young Jung

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  9. Jason K Kim

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  10. Neil Aronin

    Department of Medicine, Division of Endocrinology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    No competing interests declared.
  11. Richard A Flavell

    Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  12. Bradford B Lowell

    Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    No competing interests declared.
  13. Roger J Davis

    Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    roger.davis@umassmed.edu
    Competing interests
    Roger J Davis, Reviewing Editor, eLife.

Reviewing Editor

  1. Richard D Palmiter, Howard Hughes Medical Institute, University of Washington, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#A-978 and #A-1032) of the University of Massachusetts Medical School.

Version history

  1. Received: July 11, 2015
  2. Accepted: February 22, 2016
  3. Accepted Manuscript published: February 24, 2016 (version 1)
  4. Version of Record published: March 9, 2016 (version 2)

Copyright

© 2016, Vernia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,522
    views
  • 382
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Santiago Vernia
  2. Caroline Morel
  3. Joseph C Madara
  4. Julie Cavanagh-Kyros
  5. Tamera Barrett
  6. Kathryn Chase
  7. Norman J Kennedy
  8. Dae Young Jung
  9. Jason K Kim
  10. Neil Aronin
  11. Richard A Flavell
  12. Bradford B Lowell
  13. Roger J Davis
(2016)
Excitatory transmission onto AgRP neurons is regulated by cJun NH2-terminal kinase 3 in response to metabolic stress
eLife 5:e10031.
https://doi.org/10.7554/eLife.10031

Share this article

https://doi.org/10.7554/eLife.10031

Further reading

    1. Cell Biology
    Ruichen Yang, Hongshang Chu ... Baojie Li
    Research Article

    Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.