Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass

  1. William Menegas
  2. Joseph F Bergan
  3. Sachie K Ogawa
  4. Yoh Isogai
  5. Kannan Umadevi Venkataraju
  6. Pavel Osten
  7. Naoshige Uchida
  8. Mitsuko Watabe-Uchida  Is a corresponding author
  1. Harvard University, United States
  2. University of Massachusetts Amherst, United States
  3. Massachusetts Institute of Technology, United States
  4. Cold Spring Harbor Laboratory, United States

Abstract

Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc.) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense 'clusters' of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs.

Article and author information

Author details

  1. William Menegas

    Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    No competing interests declared.
  2. Joseph F Bergan

    Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, United States
    Competing interests
    Joseph F Bergan, Yoh Isogai and Joseph Bergan have filed a patent application on OptiView.
  3. Sachie K Ogawa

    RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
    Competing interests
    No competing interests declared.
  4. Yoh Isogai

    Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    Yoh Isogai, Yoh Isogai and Joseph Bergan have filed a patent application on OptiView.
  5. Kannan Umadevi Venkataraju

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  6. Pavel Osten

    Cold Spring Harbor Laboratory, Cold Spring Harbor, United States
    Competing interests
    No competing interests declared.
  7. Naoshige Uchida

    Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    Competing interests
    Naoshige Uchida, Reviewing editor, eLife.
  8. Mitsuko Watabe-Uchida

    Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    mitsuko@mcb.harvard.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Sacha B Nelson, Brandeis University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved Harvard animal care and use committee (IACUC) protocols (#26-03) of Harvard University. All surgery was performed under isofluorane anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: July 11, 2015
  2. Accepted: August 28, 2015
  3. Accepted Manuscript published: August 31, 2015 (version 1)
  4. Version of Record published: October 9, 2015 (version 2)

Copyright

© 2015, Menegas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 13,346
    views
  • 3,064
    downloads
  • 231
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William Menegas
  2. Joseph F Bergan
  3. Sachie K Ogawa
  4. Yoh Isogai
  5. Kannan Umadevi Venkataraju
  6. Pavel Osten
  7. Naoshige Uchida
  8. Mitsuko Watabe-Uchida
(2015)
Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass
eLife 4:e10032.
https://doi.org/10.7554/eLife.10032

Share this article

https://doi.org/10.7554/eLife.10032

Further reading

    1. Neuroscience
    Yu-Feng Xie, Jane Yang ... Steven A Prescott
    Research Article

    Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy – achieving similar function using different components – and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.

    1. Neuroscience
    Mischa Vance Bandet, Ian Robert Winship
    Research Article

    Despite substantial progress in mapping the trajectory of network plasticity resulting from focal ischemic stroke, the extent and nature of changes in neuronal excitability and activity within the peri-infarct cortex of mice remains poorly defined. Most of the available data have been acquired from anesthetized animals, acute tissue slices, or infer changes in excitability from immunoassays on extracted tissue, and thus may not reflect cortical activity dynamics in the intact cortex of an awake animal. Here, in vivo two-photon calcium imaging in awake, behaving mice was used to longitudinally track cortical activity, network functional connectivity, and neural assembly architecture for 2 months following photothrombotic stroke targeting the forelimb somatosensory cortex. Sensorimotor recovery was tracked over the weeks following stroke, allowing us to relate network changes to behavior. Our data revealed spatially restricted but long-lasting alterations in somatosensory neural network function and connectivity. Specifically, we demonstrate significant and long-lasting disruptions in neural assembly architecture concurrent with a deficit in functional connectivity between individual neurons. Reductions in neuronal spiking in peri-infarct cortex were transient but predictive of impairment in skilled locomotion measured in the tapered beam task. Notably, altered neural networks were highly localized, with assembly architecture and neural connectivity relatively unaltered a short distance from the peri-infarct cortex, even in regions within ‘remapped’ forelimb functional representations identified using mesoscale imaging with anaesthetized preparations 8 weeks after stroke. Thus, using longitudinal two-photon microscopy in awake animals, these data show a complex spatiotemporal relationship between peri-infarct neuronal network function and behavioral recovery. Moreover, the data highlight an apparent disconnect between dramatic functional remapping identified using strong sensory stimulation in anaesthetized mice compared to more subtle and spatially restricted changes in individual neuron and local network function in awake mice during stroke recovery.