A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics

  1. Elisabeth A Geyer
  2. Alexander Burns
  3. Beth A Lalonde
  4. Xuecheng Ye
  5. Felipe-Andres Piedra
  6. Tim C Huffaker
  7. Luke M Rice  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Cornell University, United States

Abstract

Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking.

Article and author information

Author details

  1. Elisabeth A Geyer

    Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander Burns

    Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Beth A Lalonde

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Xuecheng Ye

    Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Felipe-Andres Piedra

    Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tim C Huffaker

    Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Luke M Rice

    Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Luke.Rice@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Thomas Surrey, LRI, United Kingdom

Version history

  1. Received: July 15, 2015
  2. Accepted: October 6, 2015
  3. Accepted Manuscript published: October 6, 2015 (version 1)
  4. Version of Record published: December 9, 2015 (version 2)

Copyright

© 2015, Geyer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,886
    views
  • 755
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elisabeth A Geyer
  2. Alexander Burns
  3. Beth A Lalonde
  4. Xuecheng Ye
  5. Felipe-Andres Piedra
  6. Tim C Huffaker
  7. Luke M Rice
(2015)
A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics
eLife 4:e10113.
https://doi.org/10.7554/eLife.10113

Share this article

https://doi.org/10.7554/eLife.10113

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.