ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation

  1. Nataliya Nady
  2. Ankit Gupta
  3. Ziyang Ma
  4. Tomek Swigut
  5. Akiko Koide
  6. Shohei Koide
  7. Joanna Wysocka  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. University of Chicago, United States

Abstract

Prdm14 is a sequence-specific transcriptional regulator of embryonic stem cell (ESC) pluripotency and primordial germ cell (PGC) formation. It exerts its function, at least in part, through repressing genes associated with epigenetic modification and cell differentiation. Here, we show that this repressive function is mediated through an ETO-family co-repressor Mtgr1, which tightly binds to the pre-SET/SET domains of Prdm14 and co-occupies its genomic targets in mouse ESCs. We generated two monobodies, synthetic binding proteins, targeting the Prdm14 SET domain and demonstrate their utility, respectively, in facilitating crystallization and structure determination of the Prdm14-Mtgr1 complex, or as genetically encoded inhibitor of the Prdm14-Mtgr1 interaction. Structure-guided point mutants and the monobody abrogated the Prdm14-Mtgr1 association and disrupted Prdm14's function in mESC gene expression and PGC formation in vitro. Altogether, our work uncovers the molecular mechanism underlying Prdm14-mediated repression and provides renewable reagents for studying and controlling Prdm14 functions.

Article and author information

Author details

  1. Nataliya Nady

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Ankit Gupta

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    Ankit Gupta, SK and AK are inventors on a patent application filed by the University of Chicago that covers monobody library design (US 13/813,409).The monobodies described in this work are available from SK under a material transfer agreement with the University of Chicago..
  3. Ziyang Ma

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Tomek Swigut

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Akiko Koide

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  6. Shohei Koide

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    Shohei Koide, SK and AK are inventors on a patent application filed by the University of Chicago that covers monobody library design (US 13/813,409).The monobodies described in this work are available from SK under a material transfer agreement with the University of Chicago..
  7. Joanna Wysocka

    Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, United States
    For correspondence
    wysocka@stanford.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Karen Adelman, National Institute of Environmental Health Sciences, United States

Version history

  1. Received: July 20, 2015
  2. Accepted: November 1, 2015
  3. Accepted Manuscript published: November 2, 2015 (version 1)
  4. Version of Record published: February 1, 2016 (version 2)

Copyright

© 2015, Nady et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,842
    views
  • 862
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nataliya Nady
  2. Ankit Gupta
  3. Ziyang Ma
  4. Tomek Swigut
  5. Akiko Koide
  6. Shohei Koide
  7. Joanna Wysocka
(2015)
ETO family protein Mtgr1 mediates Prdm14 functions in stem cell maintenance and primordial germ cell formation
eLife 4:e10150.
https://doi.org/10.7554/eLife.10150

Share this article

https://doi.org/10.7554/eLife.10150

Further reading

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.