An extensive program of periodic alternative splicing linked to cell cycle progression

  1. Daniel Dominguez
  2. Yi-Hsuan Tsai
  3. Robert Weatheritt
  4. Yang Wang
  5. Benjamin J Blencowe
  6. Zefeng Wang  Is a corresponding author
  1. University of North Carolina at Chapel Hill, United States
  2. University of Toronto, Canada

Abstract

Progression through the mitotic cell cycle requires periodic regulation of gene function at the levels of transcription, translation, protein-protein interactions, post-translational modification and degradation. However, the role of alternative splicing (AS) in the temporal control of cell cycle is not well understood. By sequencing the human transcriptome through two continuous cell cycles, we identify ~1,300 genes with cell cycle-dependent AS changes. These genes are significantly enriched in functions linked to cell cycle control, yet they do not significantly overlap genes subject to periodic changes in steady-state transcript levels. Many of the periodically spliced genes are controlled by the SR protein kinase CLK1, whose level undergoes cell cycle-dependent fluctuations via an auto-inhibitory circuit. Disruption of CLK1 causes pleiotropic cell cycle defects and loss of proliferation, whereas CLK1 over-expression is associated with various cancers. These results thus reveal a large program of CLK1-regulated periodic AS intimately associated with cell cycle control.

Article and author information

Author details

  1. Daniel Dominguez

    Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  2. Yi-Hsuan Tsai

    Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  3. Robert Weatheritt

    Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    No competing interests declared.
  4. Yang Wang

    Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    No competing interests declared.
  5. Benjamin J Blencowe

    Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada
    Competing interests
    Benjamin J Blencowe, Reviewing editor, eLIFE .
  6. Zefeng Wang

    Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    zefeng@med.unc.edu
    Competing interests
    No competing interests declared.

Reviewing Editor

  1. Gene Yeo, University of California, San Diego, United States

Version history

  1. Received: July 22, 2015
  2. Accepted: March 24, 2016
  3. Accepted Manuscript published: March 25, 2016 (version 1)
  4. Version of Record published: May 27, 2016 (version 2)

Copyright

© 2016, Dominguez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,543
    views
  • 1,535
    downloads
  • 99
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel Dominguez
  2. Yi-Hsuan Tsai
  3. Robert Weatheritt
  4. Yang Wang
  5. Benjamin J Blencowe
  6. Zefeng Wang
(2016)
An extensive program of periodic alternative splicing linked to cell cycle progression
eLife 5:e10288.
https://doi.org/10.7554/eLife.10288

Share this article

https://doi.org/10.7554/eLife.10288

Further reading

    1. Cell Biology
    Gang Liu, Yunxuan Hou ... Xiumei Jiang
    Research Article

    Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron–sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron–sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.