Kinesin Kip2 enhances microtubule growth in vitro through length-dependent feedback on polymerization and catastrophe

  1. Anneke Hibbel
  2. Aliona Bogdanova
  3. Mohammed Mahamdeh
  4. Anita Jannasch
  5. Marko Storch
  6. Erik Schäffer
  7. Dimitris Liakopoulos
  8. Jonathon Howard  Is a corresponding author
  1. Max Planck Institute of Molecular Cell Biology and Genetics, Germany
  2. Yale University, United States
  3. Imperial College London, United Kingdom
  4. Eberhard-Karls-Universität Tübingen, Germany
  5. Centre de Recherche de Biochimie Macromoléculaire, France

Abstract

The size and position of mitotic spindles is determined by the lengths of their constituent microtubules. Regulation of microtubule length requires feedback to set the balance between growth and shrinkage. Whereas negative feedback mechanisms for microtubule length control, based on depolymerizing kinesins and severing proteins, have been studied extensively, positive feedback mechanisms are not known. Here we report that the budding yeast kinesin Kip2 is a microtubule polymerase and catastrophe inhibitor in vitro that uses its processive motor activity as part of a feedback loop to further promote microtubule growth. Positive feedback arises because longer microtubules bind more motors, which walk to the ends where they further reinforce growth and inhibit catastrophe. We propose that positive feedback, common in biochemical pathways to switch between signaling states, can also be used in a mechanical signaling pathway to switch between structural states, in this case between short and long polymers.

Article and author information

Author details

  1. Anneke Hibbel

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Aliona Bogdanova

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Mohammed Mahamdeh

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anita Jannasch

    Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Marko Storch

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Erik Schäffer

    Zentrum für Molekularbiologie der Pflanzen, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Dimitris Liakopoulos

    Centre de Recherche de Biochimie Macromoléculaire, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonathon Howard

    Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, United States
    For correspondence
    jonathon.howard@yale.edu
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Andrea Musacchio, Max Planck Institute of Molecular Physiology, Germany

Version history

  1. Received: August 3, 2015
  2. Accepted: November 17, 2015
  3. Accepted Manuscript published: November 18, 2015 (version 1)
  4. Version of Record published: February 9, 2016 (version 2)

Copyright

© 2015, Hibbel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,897
    views
  • 727
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anneke Hibbel
  2. Aliona Bogdanova
  3. Mohammed Mahamdeh
  4. Anita Jannasch
  5. Marko Storch
  6. Erik Schäffer
  7. Dimitris Liakopoulos
  8. Jonathon Howard
(2015)
Kinesin Kip2 enhances microtubule growth in vitro through length-dependent feedback on polymerization and catastrophe
eLife 4:e10542.
https://doi.org/10.7554/eLife.10542

Share this article

https://doi.org/10.7554/eLife.10542

Further reading

    1. Structural Biology and Molecular Biophysics
    Christian Galicia, Giambattista Guaitoli ... Wim Versées
    Research Article

    Roco proteins entered the limelight after mutations in human LRRK2 were identified as a major cause of familial Parkinson’s disease. LRRK2 is a large and complex protein combining a GTPase and protein kinase activity, and disease mutations increase the kinase activity, while presumably decreasing the GTPase activity. Although a cross-communication between both catalytic activities has been suggested, the underlying mechanisms and the regulatory role of the GTPase domain remain unknown. Several structures of LRRK2 have been reported, but structures of Roco proteins in their activated GTP-bound state are lacking. Here, we use single-particle cryo-electron microscopy to solve the structure of a bacterial Roco protein (CtRoco) in its GTP-bound state, aided by two conformation-specific nanobodies: NbRoco1 and NbRoco2. This structure presents CtRoco in an active monomeric state, featuring a very large GTP-induced conformational change using the LRR-Roc linker as a hinge. Furthermore, this structure shows how NbRoco1 and NbRoco2 collaborate to activate CtRoco in an allosteric way. Altogether, our data provide important new insights into the activation mechanism of Roco proteins, with relevance to LRRK2 regulation, and suggest new routes for the allosteric modulation of their GTPase activity.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.