Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect

  1. Agata P Zielinska
  2. Zuzana Holubcova
  3. Martyn Blayney
  4. Kay Elder
  5. Melina Schuh  Is a corresponding author
  1. Medical Research Council, United Kingdom
  2. Bourn Hall Clinic, United Kingdom

Abstract

Aneuploidy in human eggs is the leading cause of pregnancy loss and Down's syndrome. Aneuploid eggs result from chromosome segregation errors when an egg develops from a progenitor cell, called an oocyte. The mechanisms that lead to an increase in aneuploidy with advanced maternal age are largely unclear. Here, we show that many sister kinetochores in human oocytes are separated and do not behave as a single functional unit during the first meiotic division. Having separated sister kinetochores allowed bivalents to rotate by 90 degrees on the spindle and increased the risk of merotelic kinetochore-microtubule attachments. Advanced maternal age led to an increase in sister kinetochore separation, rotated bivalents and merotelic attachments. Chromosome arm cohesion was weakened, and the fraction of bivalents that precociously dissociated into univalents was increased. Together, our data reveal multiple age-related changes in chromosome architecture that could explain why oocyte aneuploidy increases with advanced maternal age.

Article and author information

Author details

  1. Agata P Zielinska

    Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Zuzana Holubcova

    Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Martyn Blayney

    Bourn Hall Clinic, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Kay Elder

    Bourn Hall Clinic, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Melina Schuh

    Laboratory of Molecular Biology, Medical Research Council, Cambridge, United Kingdom
    For correspondence
    mschuh@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Andrea Musacchio, Max Planck Institute of Molecular Physiology, Germany

Ethics

Human subjects: The use of immature unfertilized human oocytes in this study has been approved by the UK's National Research Ethics Service under the REC reference 11/EE/0346; IRAS Project ID 84952. Immature unfertilized oocytes were donated by women receiving assisted reproduction treatment at Bourn Hall Clinic (Cambridge, UK).

Version history

  1. Received: September 4, 2015
  2. Accepted: December 9, 2015
  3. Accepted Manuscript published: December 15, 2015 (version 1)
  4. Accepted Manuscript updated: December 16, 2015 (version 2)
  5. Version of Record published: February 2, 2016 (version 3)

Copyright

© 2015, Zielinska et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,246
    views
  • 976
    downloads
  • 101
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Agata P Zielinska
  2. Zuzana Holubcova
  3. Martyn Blayney
  4. Kay Elder
  5. Melina Schuh
(2015)
Sister kinetochore splitting and precocious disintegration of bivalents could explain the maternal age effect
eLife 4:e11389.
https://doi.org/10.7554/eLife.11389

Share this article

https://doi.org/10.7554/eLife.11389

Further reading

    1. Cancer Biology
    2. Cell Biology
    Timothy J Walker, Eduardo Reyes-Alvarez ... Lois M Mulligan
    Research Article

    Internalization from the cell membrane and endosomal trafficking of receptor tyrosine kinases (RTKs) are important regulators of signaling in normal cells that can frequently be disrupted in cancer. The adrenal tumor pheochromocytoma (PCC) can be caused by activating mutations of the rearranged during transfection (RET) receptor tyrosine kinase, or inactivation of TMEM127, a transmembrane tumor suppressor implicated in trafficking of endosomal cargos. However, the role of aberrant receptor trafficking in PCC is not well understood. Here, we show that loss of TMEM127 causes wildtype RET protein accumulation on the cell surface, where increased receptor density facilitates constitutive ligand-independent activity and downstream signaling, driving cell proliferation. Loss of TMEM127 altered normal cell membrane organization and recruitment and stabilization of membrane protein complexes, impaired assembly, and maturation of clathrin-coated pits, and reduced internalization and degradation of cell surface RET. In addition to RTKs, TMEM127 depletion also promoted surface accumulation of several other transmembrane proteins, suggesting it may cause global defects in surface protein activity and function. Together, our data identify TMEM127 as an important determinant of membrane organization including membrane protein diffusability and protein complex assembly and provide a novel paradigm for oncogenesis in PCC where altered membrane dynamics promotes cell surface accumulation and constitutive activity of growth factor receptors to drive aberrant signaling and promote transformation.

    1. Cancer Biology
    2. Cell Biology
    Julian JA Hoving, Elizabeth Harford-Wright ... Alison C Lloyd
    Research Article Updated

    Collective cell migration is fundamental for the development of organisms and in the adult for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell–cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell–cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell–cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective SC migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased SC collective migration and increased clustering of SCs within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.