Genetic mechanisms control the linear scaling between related cortical primary and higher order sensory areas

  1. Andreas Zembrzycki  Is a corresponding author
  2. Adam M Stocker
  3. Axel Leingärtner
  4. Setsuko Sahara
  5. Shen-Ju Chou
  6. Valery Kalatsky
  7. Scott R May
  8. Michael P Stryker
  9. Dennis DM O'Leary
  1. The Salk Institute For Biological Studies, United States
  2. Minnesota State University Moorhead, United States
  3. University Medical Center, Germany
  4. King's College London, United Kingdom
  5. Academia Sinica, Taiwan
  6. Enthought Scientific Computing Solutions, United States
  7. University of California, San Francisco, United States

Abstract

In mammals, the neocortical layout consists of few modality-specific primary sensory areas and a multitude of higher order ones. Abnormal layout of cortical areas may disrupt sensory function and behavior. Developmental genetic mechanisms specify primary areas, but mechanisms influencing higher order area properties are unknown. By exploiting gain-of and loss-of function mouse models of the transcription factor Emx2, we have generated bi-directional changes in primary visual cortex size in vivo and have used it as a model to show a novel and prominent function for genetic mechanisms regulating primary visual area size and also proportionally dictating the sizes of surrounding higher order visual areas. This finding redefines the role for intrinsic genetic mechanisms to concomitantly specify and scale primary and related higher order sensory areas in a linear fashion.

Article and author information

Author details

  1. Andreas Zembrzycki

    Molecular Neurobiology Laboratory, The Salk Institute For Biological Studies, La Jolla, United States
    For correspondence
    azembrzycki@salk.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Adam M Stocker

    Biosciences Department, Minnesota State University Moorhead, Moorhead, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Axel Leingärtner

    University Cancer Center Hamburg, University Medical Center, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Setsuko Sahara

    MRC Centre for Developmental Neurobiology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Shen-Ju Chou

    Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  6. Valery Kalatsky

    Enthought Scientific Computing Solutions, Austin, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Scott R May

    Molecular Neurobiology Laboratory, The Salk Institute For Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Michael P Stryker

    Center for Integrative Neuroscience, Department of Physiology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Dennis DM O'Leary

    Molecular Neurobiology Laboratory, The Salk Institute For Biological Studies, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.

Reviewing Editor

  1. Moses V Chao, New York University School of Medicine, United States

Ethics

Animal experimentation: All experiments were approved under Protocol #09-012 and conducted following the guidelines of the Institutional Animal Care and Use Committee at the Salk Institute and were in full compliance with the guidelines of the National Institutes of Health for the care and use of laboratory animals.

Version history

  1. Received: September 5, 2015
  2. Accepted: December 23, 2015
  3. Accepted Manuscript published: December 24, 2015 (version 1)
  4. Version of Record published: January 26, 2016 (version 2)

Copyright

© 2015, Zembrzycki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,196
    views
  • 483
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andreas Zembrzycki
  2. Adam M Stocker
  3. Axel Leingärtner
  4. Setsuko Sahara
  5. Shen-Ju Chou
  6. Valery Kalatsky
  7. Scott R May
  8. Michael P Stryker
  9. Dennis DM O'Leary
(2015)
Genetic mechanisms control the linear scaling between related cortical primary and higher order sensory areas
eLife 4:e11416.
https://doi.org/10.7554/eLife.11416

Share this article

https://doi.org/10.7554/eLife.11416

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.